
Brian A Cobb

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7686367/publications.pdf Version: 2024-02-01

RDIAN A CORR

#	Article	IF	CITATIONS
1	Antigen presenting cell response to polysaccharide A is characterized by the generation of anti-inflammatory macrophages. Glycobiology, 2022, 32, 136-147.	2.5	2
2	Divergent Golgi trafficking limits B cell-mediated IgG sialylation. Journal of Leukocyte Biology, 2022, 112, 1555-1566.	3.3	8
3	Reduced red blood cell surface level of Factor H as a mechanism underlying paroxysmal nocturnal hemoglobinuria. Leukemia, 2021, 35, 1176-1187.	7.2	4
4	Integration of IL-2 and IL-4 signals coordinates divergent regulatory T cell responses and drives therapeutic efficacy. ELife, 2021, 10, .	6.0	25
5	Glycans in Immunologic Health and Disease. Annual Review of Immunology, 2021, 39, 511-536.	21.8	24
6	The history of IgG glycosylation and where we are now. Glycobiology, 2020, 30, 202-213.	2.5	120
7	Modulation of hepatocyte sialylation drives spontaneous fatty liver disease and inflammation. Glycobiology, 2020, 30, 346-359.	2.5	17
8	Characterization of Polysaccharide A Response Reveals Interferon Responsive Gene Signature and Immunomodulatory Marker Expression. Frontiers in Immunology, 2020, 11, 556813.	4.8	18
9	Disruption of hepatocyte Sialylation drives a T cell-dependent pro-inflammatory immune tone. Glycoconjugate Journal, 2020, 37, 395-407.	2.7	14
10	CD45Rb-low effector T cells require IL-4 to induce IL-10 in FoxP3 Tregs and to protect mice from inflammation. PLoS ONE, 2019, 14, e0216893.	2.5	18
11	Purification of Capsular Polysaccharide Complex from Gram-Negative Bacteria. Methods in Molecular Biology, 2019, 1954, 25-35.	0.9	6
12	Plasma glycomics predict cardiovascular disease in patients with ART ontrolled HIV infections. FASEB Journal, 2019, 33, 1852-1859.	0.5	11
13	Mechanisms to Evade the Phagocyte Respiratory Burst Arose by Convergent Evolution in Typhoidal Salmonella Serovars. Cell Reports, 2018, 22, 1787-1797.	6.4	34
14	Emerging glycobiology tools: A renaissance in accessibility. Cellular Immunology, 2018, 333, 2-8.	3.0	9
15	Antibody receptors steal the sweet spotlight. Journal of Biological Chemistry, 2018, 293, 3490-3491.	3.4	4
16	Polysaccharide-experienced effector T cells induce IL-10 in FoxP3+ regulatory T cells to prevent pulmonary inflammation. Glycobiology, 2018, 28, 50-58.	2.5	49
17	The Glycoscience of Immunity. Trends in Immunology, 2018, 39, 523-535.	6.8	59
18	The direct and indirect effects of glycans on immune function. Glycobiology, 2017, 27, 619-624.	2.5	66

BRIAN A COBB

#	Article	IF	CITATIONS
19	T cell-intrinsic TLR2 stimulation promotes IL-10 expression and suppressive activity by CD45RbHi T cells. PLoS ONE, 2017, 12, e0180688.	2.5	14
20	Dendritic cell-specific Mgat2 knockout mice show antigen presentation defects but reveal an unexpected CD11c expression pattern. Glycobiology, 2016, 26, 1007-1013.	2.5	7
21	B-cell–independent sialylation of IgC. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7207-7212.	7.1	115
22	Polysaccharide A from the Capsule of Bacteroides fragilis Induces Clonal CD4+ T Cell Expansion. Journal of Biological Chemistry, 2015, 290, 5007-5014.	3.4	63
23	Bacterial capsular polysaccharide prevents the onset of asthma through T-cell activation. Glycobiology, 2015, 25, 368-375.	2.5	67
24	Major Histocompatibility Complex: N-Glycosylation Form and Function. , 2015, , 643-648.		1
25	Mgat2 ablation in the myeloid lineage leads to defective glycoantigen T cell responses. Glycobiology, 2014, 24, 262-271.	2.5	8
26	Activation of neutrophils by autocrine IL-17A–IL-17RC interactions during fungal infection is regulated by IL-6, IL-23, RORγt and dectin-2. Nature Immunology, 2014, 15, 143-151.	14.5	373
27	Myeloid Glycosylation Defects Lead to a Spontaneous Common Variable Immunodeficiency-like Condition with Associated Hemolytic Anemia and Antilymphocyte Autoimmunity. Journal of Immunology, 2014, 192, 5561-5570.	0.8	3
28	The Major Histocompatibility Complex: N-Glycosylation Form and Function. , 2014, , 1-6.		0
29	The regulatory power of glycans and their binding partners in immunity. Trends in Immunology, 2013, 34, 290-298.	6.8	116
30	Neutrophils Confer T Cell Resistance to Myeloid-Derived Suppressor Cell–Mediated Suppression To Promote Chronic Inflammation. Journal of Immunology, 2013, 190, 5037-5047.	0.8	18
31	Interaction of the Capsular Polysaccharide A from Bacteroides fragilis with DC-SIGN on Human Dendritic Cells is Necessary for Its Processing and Presentation to T Cells. Frontiers in Immunology, 2013, 4, 103.	4.8	32
32	Host glycans and antigen presentation. Microbes and Infection, 2012, 14, 894-903.	1.9	20
33	Infection, inflammation and host carbohydrates: A Glyco-Evasion Hypothesis. Glycobiology, 2012, 22, 1019-1030.	2.5	84
34	Roles for major histocompatibility complex glycosylation in immune function. Seminars in Immunopathology, 2012, 34, 425-441.	6.1	64
35	Glycobiology of immune responses. Annals of the New York Academy of Sciences, 2012, 1253, 1-15.	3.8	226
36	Fungal antioxidant pathways promote survival against neutrophils during infection. Journal of Clinical Investigation, 2012, 122, 2482-2498.	8.2	132

BRIAN A COBB

#	Article	IF	CITATIONS
37	Adaptive immune defects against glycoantigens in chronic granulomatous disease via dysregulated nitric oxide production. European Journal of Immunology, 2011, 41, 2562-2572.	2.9	9
38	MHCII glycosylation modulates Bacteroides fragilis carbohydrate antigen presentation. Journal of Experimental Medicine, 2011, 208, 1041-1053.	8.5	48
39	Structural characterization and MHCII-dependent immunological properties of the zwitterionic O-chain antigen of Morganella morganii. Glycobiology, 2011, 21, 1266-1276.	2.5	22
40	Glycoantigens Induce Human Peripheral Tr1 Cell Differentiation with Gut-homing Specialization. Journal of Biological Chemistry, 2011, 286, 8810-8818.	3.4	36
41	Carbohydrate Oxidation Acidifies Endosomes, Regulating Antigen Processing and TLR9 Signaling. Journal of Immunology, 2010, 184, 3789-3800.	0.8	18
42	Immunology and the biomedical student pipeline. European Journal of Immunology, 2009, 39, 1183-1187.	2.9	1
43	A simple test tubeâ€based ELISA experiment for the highâ€school classroom. Biochemistry and Molecular Biology Education, 2009, 37, 243-248.	1.2	13
44	Type I <i>Streptococcus pneumoniae</i> carbohydrate utilizes a nitric oxide and MHC IIâ€dependent pathway for antigen presentation. Immunology, 2009, 127, 73-82.	4.4	63
45	Characteristics of carbohydrate antigen binding to the presentation protein HLA-DR. Glycobiology, 2008, 18, 707-718.	2.5	57
46	Structure and function relations with a T-cell-activating polysaccharide antigen using circular dichroism. Glycobiology, 2007, 17, 46-55.	2.5	40
47	A bacterial carbohydrate links innate and adaptive responses through Toll-like receptor 2. Journal of Experimental Medicine, 2006, 203, 2853-2863.	8.5	245
48	Zwitterionic capsular polysaccharides: the new MHCII-dependent antigens. Cellular Microbiology, 2005, 7, 1398-1403.	2.1	82
49	Coming of age: carbohydrates and immunity. European Journal of Immunology, 2005, 35, 352-356.	2.9	94
50	Polysaccharide Processing and Presentation by the MHCII Pathway. Cell, 2004, 117, 677-687.	28.9	313
51	ST6Gal1 in plasma is dispensable for IgG sialylation. Glycobiology, 0, , .	2.5	8