Nicos A Nicola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7686156/publications.pdf Version: 2024-02-01

		7096	6654
229	25,849	78	156
papers	citations	h-index	g-index
232	232	232	18979
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A family of cytokine-inducible inhibitors of signalling. Nature, 1997, 387, 917-921.	27.8	1,947
2	Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature, 1988, 336, 684-687.	27.8	1,871
3	The Pseudokinase MLKL Mediates Necroptosis via a Molecular Switch Mechanism. Immunity, 2013, 39, 443-453.	14.3	958
4	SOCS3 negatively regulates IL-6 signaling in vivo. Nature Immunology, 2003, 4, 540-545.	14.5	743
5	SOCS1 Is a Critical Inhibitor of Interferon Î ³ Signaling and Prevents the Potentially Fatal Neonatal Actions of this Cytokine. Cell, 1999, 98, 597-608.	28.9	715
6	Twenty proteins containing a C-terminal SOCS box form five structural classes. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 114-119.	7.1	674
7	Leptin can induce proliferation, differentiation, and functional activation of hemopoietic cells. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 14564-14568.	7.1	669
8	The conserved SOCS box motif in suppressors of cytokine signaling binds to elongins B and C and may couple bound proteins to proteasomal degradation. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 2071-2076.	7.1	581
9	Molecular cloning of cDNA encoding a murine haematopoietic growth regulator, granulocyte—macrophage colony stimulating factor. Nature, 1984, 309, 763-767.	27.8	453
10	Gigantism in mice lacking suppressor of cytokine signalling-2. Nature, 2000, 405, 1069-1073.	27.8	447
11	Suppressor of cytokine signaling-3 preferentially binds to the SHP-2-binding site on the shared cytokine receptor subunit gp130. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 6493-6498.	7.1	426
12	Cloning and characterization of a binding subunit of the interleukin 13 receptor that is also a component of the interleukin 4 receptor Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 497-501.	7.1	397
13	Liver degeneration and lymphoid deficiencies in mice lacking suppressor of cytokine signaling-1. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 14395-14399.	7.1	394
14	The SOCS box: a tale of destruction and degradation. Trends in Biochemical Sciences, 2002, 27, 235-241.	7.5	394
15	Mutational analyses of the SOCS proteins suggest a dual domain requirement but distinct mechanisms for inhibition of LIF and IL-6 signal transduction. EMBO Journal, 1999, 18, 375-385.	7.8	393
16	Leukemia inhibitory factor (LIF). Cytokine and Growth Factor Reviews, 2015, 26, 533-544.	7.2	320
17	Hierarchical down-modulation of hemopoietic growth factor receptors. Cell, 1985, 43, 269-276.	28.9	306
18	Subunit promiscuity among hemopoietic growth factor receptors. Cell, 1991, 67, 1-4.	28.9	300

#	Article	IF	CITATIONS
19	The molecular basis of JAK/STAT inhibition by SOCS1. Nature Communications, 2018, 9, 1558.	12.8	298
20	Malignant transformation of a growth factor-dependent myeloid cell line by Abelson virus without evidence of an autocrine mechanism. Cell, 1985, 41, 677-683.	28.9	292
21	Placental defects and embryonic lethality in mice lacking suppressor of cytokine signaling 3. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 9324-9329.	7.1	288
22	Growth Hormone Preferentially Induces the Rapid, Transient Expression of SOCS-3, a Novel Inhibitor of Cytokine Receptor Signaling. Journal of Biological Chemistry, 1998, 273, 1285-1287.	3.4	283
23	Hematopoietic and lung abnormalities in mice with a null mutation of the common beta subunit of the receptors for granulocyte-macrophage colony-stimulating factor and interleukins 3 and 5 Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 9565-9569.	7.1	277
24	The Dendritic Cell Receptor Clec9A Binds Damaged Cells via Exposed Actin Filaments. Immunity, 2012, 36, 646-657.	14.3	272
25	SOCS3 Is a Critical Physiological Negative Regulator of G-CSF Signaling and Emergency Granulopoiesis. Immunity, 2004, 20, 153-165.	14.3	257
26	The molecular regulation of Janus kinase (JAK) activation. Biochemical Journal, 2014, 462, 1-13.	3.7	251
27	Oncostatin M promotes bone formation independently of resorption when signaling through leukemia inhibitory factor receptor in mice. Journal of Clinical Investigation, 2010, 120, 582-592.	8.2	245
28	Suppression of Cytokine Signaling by SOCS3: Characterization of the Mode of Inhibition and the Basis of Its Specificity. Immunity, 2012, 36, 239-250.	14.3	240
29	SOCS3 binds specific receptor–JAK complexes to control cytokine signaling by direct kinase inhibition. Nature Structural and Molecular Biology, 2013, 20, 469-476.	8.2	229
30	Identification of the human analogue of a regulator that induces differentiation in murine leukaemic cells. Nature, 1985, 314, 625-628.	27.8	225
31	Binding of ¹²⁵ lâ€labeled granulocyte colonyâ€stimulating factor to normal murine hemopoietic cells. Journal of Cellular Physiology, 1985, 124, 313-321.	4.1	211
32	Proliferative effects of purified granulocyte colony-stimulating factor (G-CSF) on normal mouse hemopoietic cells. Journal of Cellular Physiology, 1983, 116, 198-206.	4.1	209
33	Molecular cloning and expression of the human homologue of the murine gene encoding myeloid leukemia-inhibitory factor Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 2623-2627.	7.1	189
34	SOCS2 negatively regulates growth hormone action in vitro and in vivo. Journal of Clinical Investigation, 2005, 115, 397-406.	8.2	188
35	From The Cover: Suppressor screen in Mpl-/- mice: c-Myb mutation causes supraphysiological production of platelets in the absence of thrombopoietin signaling. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6553-6558.	7.1	178
36	Cytokine Receptor Expression on Hematopoietic Stem and Progenitor Cells. Blood, 1997, 89, 65-71.	1.4	171

#	Article	IF	CITATIONS
37	Inhibition of IL-6 family cytokines by SOCS3. Seminars in Immunology, 2014, 26, 13-19.	5.6	157
38	DEC-205 is a cell surface receptor for CpG oligonucleotides. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16270-16275.	7.1	155
39	Direct proliferative actions of stem cell factor on murine bone marrow cells in vitro: effects of combination with colony-stimulating factors Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 6239-6243.	7.1	151
40	In vitro actions on hemopoietic cells of recombinant murine GM-CSF purified after production inEscherichia coli: Comparison with purified native GM-CSF. Journal of Cellular Physiology, 1986, 128, 421-431.	4.1	147
41	Biological Evidence That SOCS-2 Can Act Either as an Enhancer or Suppressor of Growth Hormone Signaling. Journal of Biological Chemistry, 2002, 277, 40181-40184.	3.4	147
42	Growth Enhancement in Suppressor of Cytokine Signaling 2 (SOCS-2)-Deficient Mice Is Dependent on Signal Transducer and Activator of Transcription 5b (STAT5b). Molecular Endocrinology, 2002, 16, 1394-1406.	3.7	145
43	Why do hemopoietic growth factor receptors interact with each other?. Trends in Immunology, 1987, 8, 134-140.	7.5	141
44	Binding of the differentiation-inducer, granulocyte-colony-stimulating factor, to responsive but not unresponsive leukemic cell lines Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 3765-3769.	7.1	140
45	The Structure of SOCS3 Reveals the Basis of the Extended SH2 Domain Function and Identifies an Unstructured Insertion That Regulates Stability. Molecular Cell, 2006, 22, 205-216.	9.7	140
46	Purification of a murine leukemia inhibitory factor from Krebs ascites cells. Analytical Biochemistry, 1988, 173, 359-367.	2.4	139
47	The SOCS box of suppressor of cytokine signaling-1 is important for inhibition of cytokine action in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 13261-13265.	7.1	138
48	Osteoblasts display receptors for and responses to leukemia-inhibitory factor. Journal of Cellular Physiology, 1990, 145, 110-119.	4.1	133
49	A major binding protein for leukemia inhibitory factor in normal mouse serum: identification as a soluble form of the cellular receptor Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 8616-8620.	7.1	133
50	SOCS-6 Binds to Insulin Receptor Substrate 4, and Mice Lacking the SOCS-6 Gene Exhibit Mild Growth Retardation. Molecular and Cellular Biology, 2002, 22, 4567-4578.	2.3	133
51	Granulocyte/macrophage-, megakaryocyte-, eosinophil- and erythroid-colony-stimulating factors produced by mouse spleen cells. Biochemical Journal, 1980, 185, 301-314.	3.7	132
52	Identification, Purification, and Characterization of a Soluble Interleukin (IL)-13-binding Protein. Journal of Biological Chemistry, 1997, 272, 9474-9480.	3.4	132
53	Specific binding of murine leukemia inhibitory factor to normal and leukemic monocytic cells Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 5971-5975.	7.1	127
54	Purified colony stimulating factors (G-CSF and GM-CSF) induce differentiation in human HL60 leukemic cells with suppression of clonogenicity. International Journal of Cancer, 1987, 39, 99-105.	5.1	126

#	Article	IF	CITATIONS
55	SOCS2 negatively regulates growth hormone action in vitro and in vivo. Journal of Clinical Investigation, 2005, 115, 397-406.	8.2	121
56	Synthesis by mouse peritoneal cells of G-CSF, the differentiation inducer for myeloid leukemia cells: Stimulation by endotoxin, M-CSF and multi-CSF. Leukemia Research, 1985, 9, 35-50.	0.8	120
57	Hemopoietic colony-stimulating factors. Trends in Immunology, 1984, 5, 76-80.	7.5	118
58	Localization of the human GM-CSF receptor gene to the X–Y pseudoautosomal region. Nature, 1990, 345, 734-736.	27.8	117
59	The SOCS Box Encodes a Hierarchy of Affinities for Cullin5: Implications for Ubiquitin Ligase Formation and Cytokine Signalling Suppression. Journal of Molecular Biology, 2009, 387, 162-174.	4.2	117
60	Suppressor of Cytokine Signaling-1 Regulates Signaling in Response to Interleukin-2 and Other γc-dependent Cytokines in Peripheral T Cells. Journal of Biological Chemistry, 2003, 278, 22755-22761.	3.4	113
61	The Comparative Roles of Suppressor of Cytokine Signaling-1 and -3 in the Inhibition and Desensitization of Cytokine Signaling. Journal of Biological Chemistry, 2006, 281, 11135-11143.	3.4	109
62	Structure and function of the SPRY/B30.2 domain proteins involved in innate immunity. Protein Science, 2013, 22, 1-10.	7.6	109
63	SH2 Domains from Suppressor of Cytokine Signaling-3 and Protein Tyrosine Phosphatase SHP-2 Have Similar Binding Specificitiesâ€. Biochemistry, 2002, 41, 9229-9236.	2.5	107
64	Distribution and comparison of receptors for leukemia inhibitory factor on murine hemopoietic and hepatic cells. Journal of Cellular Physiology, 1991, 146, 207-215.	4.1	106
65	Autoinduction of differentiation in wehi-3B leukemia cells. International Journal of Cancer, 1982, 30, 773-780.	5.1	104
66	The biology and mechanism of action of suppressor of cytokine signaling 3. Growth Factors, 2012, 30, 207-219.	1.7	101
67	Suppressors of cytokine signaling (SOCS): negative regulators of signal transduction. Journal of Leukocyte Biology, 1999, 66, 588-592.	3.3	100
68	Polycystic kidneys and chronic inflammatory lesions are the delayed consequences of loss of the suppressor of cytokine signaling-1 (SOCS-1). Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 943-948.	7.1	96
69	Leukemia inhibitory factor levels are elevated in septic shock and various inflammatory body fluids Journal of Clinical Investigation, 1992, 90, 2031-2037.	8.2	96
70	Suppressor of Cytokine Signaling-1 Attenuates the Duration of Interferon Î ³ Signal Transduction in Vitro and in Vivo. Journal of Biological Chemistry, 2001, 276, 22086-22089.	3.4	95
71	Expression and function of members of the cytokine receptor superfamily on breast cancer cells. Oncogene, 1997, 14, 661-669.	5.9	91
72	The SOCS Box Domain of SOCS3: Structure and Interaction with the ElonginBC-Cullin5 Ubiquitin Ligase. Journal of Molecular Biology, 2008, 381, 928-940.	4.2	91

#	Article	IF	CITATIONS
73	Purification of a ligand for the EPH-like receptor HEK using a biosensor-based affinity detection approach Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 2523-2527.	7.1	89
74	Blocking LIF action in the uterus by using a PEGylated antagonist prevents implantation: A nonhormonal contraceptive strategy. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19357-19362.	7.1	89
75	Suppressor of cytokine signaling (SOCS)-5 is a potential negative regulator of epidermal growth factor signaling. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2328-2333.	7.1	87
76	Binding of iodinated multipotential colony-stimulating factor (interleukin-3) to murine bone marrow cells. Journal of Cellular Physiology, 1986, 128, 180-188.	4.1	84
77	In vitro-derived leukemic erythroid cell lines induced by a raf- and myc-containing retrovirus differentiate in response to erythropoietin Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 8506-8510.	7.1	84
78	Two forms of murine epidermal growth factor: rapid separation by using reverse-phase HPLC Proceedings of the National Academy of Sciences of the United States of America, 1982, 79, 5753-5757.	7.1	79
79	Crystal Structure of the Entire Ectodomain of gp130. Journal of Biological Chemistry, 2010, 285, 21214-21218.	3.4	78
80	Preparation of colony stimulating factors from human placental conditioned medium. Leukemia Research, 1978, 2, 313-322.	0.8	77
81	An unusual cytokine:Ig-domain interaction revealed in the crystal structure of leukemia inhibitory factor (LIF) in complex with the LIF receptor. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12737-12742.	7.1	77
82	Enhancement of human blood eosinophil cytotoxicity by semi-purified eosinophil colony-stimulating factor(s) Journal of Experimental Medicine, 1982, 156, 90-103.	8.5	76
83	Negative Regulators of Cytokine Signaling. International Journal of Hematology, 2001, 73, 292-298.	1.6	76
84	Thrombocytopenia and kidney disease in mice with a mutation in the C1galt1 gene. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16442-16447.	7.1	76
85	Granulocyte colony-stimulating factor and differentiation-induction in myeloid leukemic cells. International Journal of Cell Cloning, 1987, 5, 1-15.	1.6	75
86	Leukemia Inhibitory Factor Is an Autocrine Survival Factor for Schwann Cells. Journal of Neurochemistry, 2002, 73, 96-104.	3.9	75
87	Down-modulation of receptors for granulocyte colony-stimulating factor on human neutrophils by granulocyte-activating agents. Journal of Cellular Physiology, 1986, 128, 501-509.	4.1	73
88	Suckling defect in mice lacking the soluble haemopoietin receptor NR6. Current Biology, 1999, 9, 605-S1.	3.9	73
89	Agm1/Pgm3-Mediated Sugar Nucleotide Synthesis Is Essential for Hematopoiesis and Development. Molecular and Cellular Biology, 2007, 27, 5849-5859.	2.3	73
90	The SPRY domain of SSB-2 adopts a novel fold that presents conserved Par-4–binding residues. Nature Structural and Molecular Biology, 2006, 13, 77-84.	8.2	72

#	Article	IF	CITATIONS
91	Low-affinity placenta-derived receptors for human granulocyte-macrophage colony-stimulating factor can deliver a proliferative signal to murine hemopoietic cells Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 4670-4674.	7.1	71
92	Aberrant hematopoiesis in mice with inactivation of the gene encoding SOCS-1. Leukemia, 1999, 13, 926-934.	7.2	70
93	The suppressors of cytokine signaling (SOCS) proteins. Experimental Hematology, 2000, 28, 1105-1112.	0.4	70
94	Suppressor of Cytokine Signaling-1 Has IFN-Î ³ -Independent Actions in T Cell Homeostasis. Journal of Immunology, 2003, 170, 878-886.	0.8	70
95	RIPLET, and not TRIM25, is required for endogenous RIGâ€lâ€dependent antiviral responses. Immunology and Cell Biology, 2019, 97, 840-852.	2.3	70
96	SOCS5 Is Expressed in Primary B and T Lymphoid Cells but Is Dispensable for Lymphocyte Production and Function. Molecular and Cellular Biology, 2004, 24, 6094-6103.	2.3	67
97	Cytoplasmic domains of the common beta -chain of the GM-CSF/IL-3/IL-5 receptors that are required for inducing differentiation or clonal suppression in myeloid leukaemic cell lines. EMBO Journal, 1997, 16, 451-464.	7.8	66
98	The Immunoglobulin-like Module of gp130 Is Required for Signaling by Interleukin-6, but Not by Leukemia Inhibitory Factor. Journal of Biological Chemistry, 1998, 273, 22701-22707.	3.4	66
99	Cellular Processing of Murine Colony-Stimulating Factor (Multi-CSF, GM-CSF, G-CSF) Receptors by Normal Hemopoietic Cells and Cell Lines. Growth Factors, 1988, 1, 41-49.	1.7	65
100	Biochemical properties of differentiation factors for murine myelomonocytic leukemic cells in organ conditioned media ? separation from colony-stimulating factors. Journal of Cellular Physiology, 1981, 109, 253-264.	4.1	64
101	Differential expression of lectin receptors during hemopoietic differntiation: Enrichment for granulocyte-macrophage progenitor cells. Journal of Cellular Physiology, 1980, 103, 217-237.	4.1	63
102	Regulation of Janus kinases by SOCS proteins. Biochemical Society Transactions, 2013, 41, 1042-1047.	3.4	62
103	Suppressor of cytokine signaling (SOCS)5 ameliorates influenza infection via inhibition of EGFR signaling. ELife, 2017, 6, .	6.0	61
104	Leukemia Inhibitory Factor Binds with High Affinity to Preosteoblastic RCT-1 Cells and Potentiates the Retinoic Acid Induction of Alkaline Phosphatase. Endocrinology, 1990, 127, 1602-1608.	2.8	59
105	Development of hydrocephalus in mice lacking SOCS7. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15446-15451.	7.1	57
106	Suppressor of cytokine signaling 3 regulates CD8 T-cell proliferation by inhibition of interleukins 6 and 27. Blood, 2007, 110, 2528-2536.	1.4	57
107	The SOCS box of suppressor of cytokine signaling-3 contributes to the control of G-CSF responsiveness in vivo. Blood, 2007, 110, 1466-1474.	1.4	57
108	Deletion of the SOCS box of suppressor of cytokine signaling 3 (SOCS3) in embryonic stem cells reveals SOCS box-dependent regulation of JAK but not STAT phosphorylation. Cellular Signalling, 2009, 21, 394-404.	3.6	57

#	Article	IF	CITATIONS
109	LIF: a molecule with divergent actions on myeloid leukaemic cells and embryonic stem cells. Reproduction, Fertility and Development, 1989, 1, 281.	0.4	56
110	Histidine-367 of the human common beta chain of the receptor is critical for high-affinity binding of human granulocyte-macrophage colony-stimulating factor Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 252-256.	7.1	54
111	Identification and Characterization of Two Distinct Truncated Forms of gp130 and a Soluble Form of Leukemia Inhibitory Factor Receptor α-Chain in Normal Human Urine and Plasma. Journal of Biological Chemistry, 1998, 273, 10798-10805.	3.4	54
112	Anomalous megakaryocytopoiesis in mice with mutations in the c-Myb gene. Blood, 2005, 105, 3480-3487.	1.4	54
113	Clearance and fate of leukemia-inhibitory factor (LIF) after injection into mice. Journal of Cellular Physiology, 1991, 148, 430-439.	4.1	53
114	The SCL gene product is regulated by and differentially regulates cytokine responses during myeloid leukemic cell differentiation Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 7864-7868.	7.1	50
115	Functional Analysis of Asb-1 Using Genetic Modification in Mice. Molecular and Cellular Biology, 2001, 21, 6189-6197.	2.3	50
116	Suppressor of Cytokine Signaling 4 (SOCS4) Protects against Severe Cytokine Storm and Enhances Viral Clearance during Influenza Infection. PLoS Pathogens, 2014, 10, e1004134.	4.7	50
117	Distinct Roles for Leukemia Inhibitory Factor Receptor α-Chain and gp130 in Cell Type-specific Signal Transduction. Journal of Biological Chemistry, 1997, 272, 19982-19986.	3.4	47
118	Growth Enhancement in Suppressor of Cytokine Signaling 2 (SOCS-2)-Deficient Mice Is Dependent on Signal Transducer and Activator of Transcription 5b (STAT5b). Molecular Endocrinology, 2002, 16, 1394-1406.	3.7	46
119	Recombinant Soluble Interleukin-11 (IL-11) Receptor α-Chain Can Act as an IL-11 Antagonist. Blood, 1997, 90, 4403-4412.	1.4	45
120	Cloning and characterization of the genes encoding the ankyrin repeat and SOCS box-containing proteins Asb-1, Asb-2, Asb-3 and Asb-4. Gene, 2000, 258, 31-41.	2.2	42
121	Ankyrin Repeat and Suppressors of Cytokine Signaling Box Protein Asb-9 Targets Creatine Kinase B for Degradation. Journal of Biological Chemistry, 2007, 282, 4728-4737.	3.4	42
122	Crystal structure of the TRIM25 B30.2 (PRYSPRY) domain: a key component of antiviral signalling. Biochemical Journal, 2013, 456, 231-240.	3.7	42
123	Suppressor of Cytokine Signaling (SOCS) 5 Utilises Distinct Domains for Regulation of JAK1 and Interaction with the Adaptor Protein Shc-1. PLoS ONE, 2013, 8, e70536.	2.5	42
124	Evidence for the formation of a heterotrimeric complex of leukaemia inhibitory factor with its receptor subunits in solution. Biochemical Journal, 1997, 325, 693-700.	3.7	41
125	ILâ€6 promotes acute and chronic inflammatory disease in the absence of SOCS3. Immunology and Cell Biology, 2012, 90, 124-129.	2.3	41
126	Receptor Clearance Obscures the Magnitude of Granulocyte-Macrophage Colony-Stimulating Factor Responses in Mice to Endotoxin or Local Infections. Blood, 1999, 93, 1579-1585.	1.4	40

#	Article	IF	CITATIONS
127	The Unusual Species Cross-reactivity of the Leukemia Inhibitory Factor Receptor α-Chain Is Determined Primarily by the Immunoglobulin-like Domain. Journal of Biological Chemistry, 1997, 272, 23976-23985.	3.4	39
128	Murine Oncostatin M Acts via Leukemia Inhibitory Factor Receptor to Phosphorylate Signal Transducer and Activator of Transcription 3 (STAT3) but Not STAT1, an Effect That Protects Bone Mass. Journal of Biological Chemistry, 2016, 291, 21703-21716.	3.4	39
129	Binding, Internalization, and Degradation of125I-Multipotential Colony-Stimulating Factor (Interleukin-3) By FDCP-1 Cells. Growth Factors, 1988, 1, 29-39.	1.7	38
130	The excess numbers of peritoneal macrophages in granulocyte-macrophage colony-stimulating factor transgenic mice are generated by local proliferation Journal of Experimental Medicine, 1992, 175, 877-884.	8.5	38
131	Specific binding of leukemia inhibitory factor to murine myoblasts in culture. Journal of Cellular Physiology, 1995, 164, 93-98.	4.1	38
132	Molecular Basis of the Soluble and Membrane-bound Forms of the Murine Leukemia Inhibitory Factor Receptor α-Chain. Journal of Biological Chemistry, 1996, 271, 5495-5504.	3.4	38
133	Behavioural and anatomical effects of systemically administered leukemia inhibitory factor in the SOD1C93A G1H mouse model of familial amyotrophic lateral sclerosis. Brain Research, 2003, 982, 92-97.	2.2	38
134	Deficiency of 5-hydroxyisourate hydrolase causes hepatomegaly and hepatocellular carcinoma in mice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16625-16630.	7.1	37
135	SOCS3. Jak-stat, 2013, 2, e25045.	2.2	37
136	Reconstruction of an active SOCS3-based E3 ubiquitin ligase complexin vitro: identification of the active components and JAK2 and gp130 as substrates. Growth Factors, 2014, 32, 1-10.	1.7	35
137	Production of Leukemia Inhibitory Factor in Escherichia coli by a Novel Procedure and Its Use in Maintaining Embryonic Stem Cells in Culture. Nature Biotechnology, 1989, 7, 1157-1161.	17.5	34
138	Solution Structure of Leukemia Inhibitory Factor. Journal of Biological Chemistry, 1998, 273, 13738-13745.	3.4	34
139	Studies of the c‐Mpl Thrombopoietin Receptor through Gene Disruption and Activation. Stem Cells, 1996, 14, 124-132.	3.2	33
140	Mechanistic insights into activation and SOCS3-mediated inhibition of myeloproliferative neoplasm-associated JAK2 mutants from biochemical and structural analyses. Biochemical Journal, 2014, 458, 395-405.	3.7	33
141	Point mutation in the gene encoding p300 suppresses thrombocytopenia in Mplâ^'/â^' mice. Blood, 2008, 112, 3148-3153.	1.4	32
142	Structural characterization of a murine myeloid leukaemia inhibitory factor. FEBS Journal, 1988, 175, 541-547.	0.2	31
143	General Classes and Functions of Four-Helix Bundle Cytokines. Advances in Protein Chemistry, 1998, 52, 1-65.	4.4	31
144	A fusion protein system for the recombinant production of short disulfide-containing peptides. Protein Expression and Purification, 2002, 26, 171-178.	1.3	30

#	Article	IF	CITATIONS
145	Affinity Maturation of Leukemia Inhibitory Factor and Conversion to Potent Antagonists of Signaling. Journal of Biological Chemistry, 2004, 279, 2125-2134.	3.4	30
146	Tissue localization and fate in mice of injected multipotential colony-stimulating factor Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 3160-3164.	7.1	29
147	Negative Regulation of Cytokine Signaling by the SOCS Proteins. Cold Spring Harbor Symposia on Quantitative Biology, 1999, 64, 397-404.	1.1	29
148	Separate actions of different colony stimulating factors from human placental conditioned medium on human hemopoietic progenitor cell survival and proliferation. Journal of Cellular Physiology, 1981, 109, 133-142.	4.1	28
149	Ligand-specific utilization of the extracellular membrane-proximal region of the gp130-related signalling receptors. Biochemical Journal, 2000, 345, 25-32.	3.7	28
150	The role of leukemia inhibitory factor in tubal ectopic pregnancy. Placenta, 2013, 34, 1014-1019.	1.5	28
151	Hemopoietic growth factors and their interactions with specific receptors. Journal of Cellular Physiology, 1987, 133, 9-14.	4.1	27
152	RECEPTORS FOR COLONY‧TIMULATING FACTORS. British Journal of Haematology, 1991, 77, 133-138.	2.5	27
153	Comparative Structural and Immunochemical Properties of Leghaemoglobins. FEBS Journal, 1976, 66, 389-399.	0.2	26
154	Vaginally Administered PEGylated LIF Antagonist Blocked Embryo Implantation and Eliminated Non-Target Effects on Bone in Mice. PLoS ONE, 2011, 6, e19665.	2.5	26
155	INTERPRETATION AND APPLICATIONS OF THERMAL DIFFERENCE SPECTRA OF PROTEINS. International Journal of Peptide and Protein Research, 1976, 8, 393-415.	0.1	24
156	Leukemia Inhibitory Factor (LIF) Inhibition during Mid-Gestation Impairs Trophoblast Invasion and Spiral Artery Remodelling during Pregnancy in Mice. PLoS ONE, 2015, 10, e0129110.	2.5	24
157	Rapid Inflammation in Mice Lacking Both SOCS1 and SOCS3 in Hematopoietic Cells. PLoS ONE, 2016, 11, e0162111.	2.5	24
158	Blocking Endogenous Leukemia Inhibitory Factor During Placental Development in Mice Leads to Abnormal Placentation and Pregnancy Loss. Scientific Reports, 2015, 5, 13237.	3.3	23
159	Analysis of purified fetal liver hemopoietic progenitor cells in liquid culture. Journal of Cellular Physiology, 1982, 112, 257-264.	4.1	22
160	Characterization of two populations of CFU-S fractionated from mouse fetal liver by fluorescence-activated cell sorting. Journal of Cellular Physiology, 1984, 118, 45-52.	4.1	22
161	A mutation in the translation initiation codon of Gata-1 disrupts megakaryocyte maturation and causes thrombocytopenia. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14146-14151.	7.1	21
162	Polyethylene glycated leukemia inhibitory factor antagonist inhibits human blastocyst implantation and triggers apoptosis by down-regulating embryonic AKT. Fertility and Sterility, 2013, 100, 1160-1169.e2.	1.0	21

#	Article	IF	CITATIONS
163	The Disulfide Bond Arrangement of Leukemia Inhibitory Factor: Homology to Oncostatin M and Structural Implications. Biochemical and Biophysical Research Communications, 1993, 190, 20-26.	2.1	20
164	SEPARATION OF MOUSE BONE MARROW CELLS USING WHEAT GERM AGGLUTININ AFFINITY CHROMATOGRAPHY. The Australian Journal of Experimental Biology and Medical Science, 1978, 56, 663-679.	0.7	19
165	Molecular Cloning of Two Novel Transmembrane Ligands for Eph-Related Kinases (LERKS) that are Related to LERK-2. Growth Factors, 1996, 13, 141-149.	1.7	19
166	The proliferative effects of human GM-CSF $\hat{1}$ ± and $\hat{1}^2$ and murine G-CSF in microwell cultures of fractionated human marrow cells. Leukemia Research, 1985, 9, 521-527.	0.8	18
167	Synergistic suppression: anomalous inhibition of the proliferation of factor-dependent hemopoietic cells by combination of two colony-stimulating factors Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 2819-2823.	7.1	18
168	Regulation of multiple cytokine signalling pathways by SOCS3 is independent of SOCS2. Growth Factors, 2009, 27, 384-393.	1.7	18
169	The biological consequences of excess GM-CSF levels in transgenic mice also lacking high-affinity receptors for GM-CSF. Leukemia, 1998, 12, 353-362.	7.2	17
170	Hemopoietic growth factor receptor abnormalities in leukemia. Leukemia Research, 1998, 22, 1097-1111.	0.8	17
171	Ligand-specific utilization of the extracellular membrane-proximal region of the gp130-related signalling receptors. Biochemical Journal, 2000, 345, 25.	3.7	17
172	Negative regulation of gp130 signalling mediated through tyrosine-757 is not dependent on the recruitment of SHP2. Biochemical Journal, 2003, 372, 495-502.	3.7	16
173	Functional characterization of c-Mpl ectodomain mutations that underlie congenital amegakaryocytic thrombocytopenia. Growth Factors, 2014, 32, 18-26.	1.7	16
174	Receptor Clearance Obscures the Magnitude of Granulocyte-Macrophage Colony-Stimulating Factor Responses in Mice to Endotoxin or Local Infections. Blood, 1999, 93, 1579-1585.	1.4	16
175	RNF41 regulates the damage recognition receptor Clec9A and antigen cross-presentation in mouse dendritic cells. ELife, 2020, 9, .	6.0	16
176	Expression of BCR – ABL in M1 myeloid leukemia cells induces differentiation without arresting proliferation. Oncogene, 1999, 18, 343-352.	5.9	15
177	Letter to the Editor: Backbone 1H, 13C and 15N assignments of the 25 kDa SPRY domain-containing SOCS box protein 2 (SSB-2). Journal of Biomolecular NMR, 2005, 31, 69-70.	2.8	14
178	Dynamics of the SPRY domain-containing SOCS box protein 2: Flexibility of key functional loops. Protein Science, 2006, 15, 2761-2772.	7.6	14
179	Cytokine Receptor Expression on Hematopoietic Stem and Progenitor Cells. Blood, 1997, 89, 65-71.	1.4	14
180	Macrophage cell lines transformed by the malignant histiocytosis sarcoma virus: Increase of CSF receptors suggests a model for transformation. Journal of Cellular Physiology, 1987, 132, 22-32.	4.1	13

#	Article	IF	CITATIONS
181	A micropreparative chromatographic strategy for the purification and sequence analysis of murine granulocyte-colony stimulating factor (mG-CSF). Chromatographia, 1987, 24, 449-454.	1.3	13
182	Homology modelling and 1 H NMR studies of human leukaemia inhibitory factor. FEBS Letters, 1994, 350, 275-280.	2.8	13
183	The Box-1 Region of the Leukemia Inhibitory Factor Receptor α-Chain Cytoplasmic Domain Is Sufficient for Hemopoietic Cell Proliferation and Differentiation. Journal of Biological Chemistry, 1998, 273, 34370-34383.	3.4	13
184	Anterograde transport of leukemia inhibitory factor within transected sciatic nerves. , 1999, 22, 78-87.		13
185	Genetic Deletion of Murine SPRY Domain-Containing SOCS Box Protein 2 (SSB-2) Results in Very Mild Thrombocytopenia. Molecular and Cellular Biology, 2005, 25, 5639-5647.	2.3	13
186	Mechanism of crosstalk inhibition of IL-6 signaling in response to LPS and TNFα. Growth Factors, 2007, 25, 319-328.	1.7	13
187	Backbone dynamics measurements on leukemia inhibitory factor, a rigid fourâ€helical bundle cytokine. Protein Science, 2000, 9, 671-682.	7.6	13
188	LRIG1 Extracellular Domain: Structure and Function Analysis. Journal of Molecular Biology, 2015, 427, 1934-1948.	4.2	13
189	Cortical Layer Inversion and Deregulation of Reelin Signaling in the Absence of SOCS6 and SOCS7. Cerebral Cortex, 2017, 27, bhv253.	2.9	13
190	Specificity of Action of Colonyâ€Stimulating Factors in the Differentiation of Granulocytes and Macrophages. Novartis Foundation Symposium, 1986, 118, 7-28.	1.1	12
191	Production of a human neutralizing monoclonal antibody and its crystal structure in complex with ectodomain 3 of the interleukin-13 receptor $\hat{l}\pm 1$. Biochemical Journal, 2013, 451, 165-175.	3.7	11
192	Identification of a second binding site on the TRIM25 B30.2 domain. Biochemical Journal, 2018, 475, 429-440.	3.7	11
193	Electronic Cell Sorting of Hemopoietic Progenitor Cells. , 1982, , 191-221.		11
194	Affinity Conversion of Receptors for Colony Stimulating Factors: Properties of Solubilized Receptors. Growth Factors, 1992, 6, 119-129.	1.7	10
195	Enzymatic Characterization of Wild-Type and Mutant Janus Kinase 1. Cancers, 2019, 11, 1701.	3.7	10
196	[44] Granulocyte colony stimulating factor. Methods in Enzymology, 1985, 116, 600-619.	1.0	9
197	Complex Binding of Leukemia Inhibitory Factor to Its Membrane-Expressed and Soluble Receptors. Experimental Biology and Medicine, 1994, 206, 295-298.	2.4	9
198	SOCS4 is dispensable for an efficient recall response to influenza despite being required for primary immunity. Immunology and Cell Biology, 2015, 93, 909-913.	2.3	9

#	Article	IF	CITATIONS
199	Structural Studies on the Murine Granulocyte Colony-Stimulating Factor. Biological Chemistry Hoppe-Seyler, 1987, 368, 1327-1332.	1.4	8
200	Resonance assignments, secondary structure and topology of leukaemia inhibitory factor in solution. Journal of Biomolecular NMR, 1997, 9, 113-126.	2.8	8
201	Distribution and Binding Properties of Receptors for Leukaemia Inhibitory Factor. Novartis Foundation Symposium, 1992, 167, 227-244.	1.1	8
202	NMR Studies of a Murine-Human Chimera of Leukaemia Inhibitory Factor (LIF). Comparison with Human LIF. Growth Factors, 1994, 11, 271-276.	1.7	7
203	Structural Aspects of Cytokine/Receptor Interactions. Annals of the New York Academy of Sciences, 1995, 766, 253-262.	3.8	7
204	The Structural Basis of the Biological Actions of the GM SF Receptor. Novartis Foundation Symposium, 1997, 204, 19-39.	1.1	7
205	Membrane-associated RING-CH (MARCH) proteins down-regulate cell surface expression of the interleukin-6 receptor alpha chain (IL6Rα). Biochemical Journal, 2019, 476, 2869-2882.	3.7	7
206	Structural Rearrangements Due to Ligand Binding and Haem Replacement in Myoglobin and Leghaemoglobins. FEBS Journal, 1977, 78, 133-140.	0.2	6
207	Interaction of poly(I-lysine) and copolymers of lysine with immobilized DNA. Archives of Biochemistry and Biophysics, 1979, 193, 204-212.	3.0	6
208	Transformation of single myeloid precursor cells by the malignant histiocytosis sarcoma virus (MHSV): Generation of growth-factor-independent myeloid colonies and permanent cell lines. Journal of Cellular Physiology, 1988, 135, 32-38.	4.1	6
209	Bone marrow cells from A/J mice do not proliferate in interleukin-3 but express normal numbers of interleukin-3 receptors. British Journal of Haematology, 1992, 82, 488-493.	2.5	6
210	Towards a Four-Dimensional View of Neutrophils. Methods in Molecular Biology, 2012, 844, 87-99.	0.9	6
211	Leukemia inhibitory factor and its receptor. Growth Factors and Cytokines in Health and Disease, 1997, , 613-668.	0.2	5
212	Differentiation commitment in normal hemopoiesis and leukemic transformation. , 1997, 173, 131-134.		5
213	A nondenaturing vertical isoelectric focusing polyacrylamide slab gel system suitable for silver staining and electrophoretic blotting. Analytical Biochemistry, 1988, 175, 474-481.	2.4	4
214	Professor Donald Metcalf (1929–2014). Immunity, 2015, 42, 1-3.	14.3	4
215	Reassessment of interactions between hematopoietic receptors using common beta-chain and interleukin-3–specific receptor beta-chain–null cells: no evidence of functional interactions with receptors for erythropoietin, granulocyte colony-stimulating factor, or stem cell factor. Blood, 2000. 96. 1588-1590.	1.4	4
216	Proteomic analyses reveal that immune integrins are major targets for regulation by Membraneâ€Associated Ring H (MARCH) proteins MARCH2, 3, 4 and 9. Proteomics, 2021, 21, 2000244.	2.2	3

#	Article	IF	CITATIONS
217	Monoclonal Antibodies that Recognize Human Granulocyte-Macrophage Colony-Stimulating Factor and Neutralize Its Bioactivity In Vitro. Hybridoma, 1990, 9, 545-558.	0.6	2
218	Strategies for the identification and purification of ligands for orphan biomolecules. International Journal of Peptide Research and Therapeutics, 1997, 4, 107-120.	0.1	2
219	Donald Metcalf (1929–2014). Cell, 2015, 160, 361-362.	28.9	2
220	Inter‧pecies Chimeras of Leukemia Inhibitory Factor Define a Human Receptor Binding Sitea. Annals of the New York Academy of Sciences, 1995, 762, 165-178.	3.8	1
221	Donald Metcalf 1929–2014. Historical Records of Australian Science, 2016, 27, 176.	0.6	1
222	Recombinant Soluble Interleukin-11 (IL-11) Receptor α-Chain Can Act as an IL-11 Antagonist. Blood, 1997, 90, 4403-4412.	1.4	1
223	Mechanisms of regulation of hemopoietic growth factor receptors. International Journal of Cell Cloning, 1991, 9, 79-90.	1.6	0
224	Why Government and Charitable Research Funding Agencies Should Not Seek Commercial Control or Returns from the Research They Fund. Clinical and Experimental Pharmacology and Physiology, 2003, 30, 116-116.	1.9	0
225	A (selective) history of Australian involvement in cytokine biology. Cytokine and Growth Factor Reviews, 2013, 24, 179-187.	7.2	0
226	Special Issue Collection: In Memoriam. Stem Cells, 2015, 33, 3397-3422.	3.2	0
227	Donald Metcalf AC. 26 February 1929 — 15 December 2014. Biographical Memoirs of Fellows of the Royal Society, 2016, 62, 409-431.	0.1	0
228	The Jak-Stat Pathway of Cytokine Signaling. , 2004, , 45-64.		0
229	Characteristics of Soluble and Membraneâ€Bound Forms of Haemopoietic Growth Factor Receptors: Relationships to Biological Function. Novartis Foundation Symposium, 1990, 148, 110-126.	1.1	Ο