Esther Vazquez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7684814/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insights on the emerging biotechnology of histidine-rich peptides. Biotechnology Advances, 2022, 54, 107817.	11.7	35
2	Self-assembling protein nanocarrier for selective delivery of cytotoxic polypeptides to CXCR4+ head and neck squamous cell carcinoma tumors. Acta Pharmaceutica Sinica B, 2022, 12, 2578-2591.	12.0	15
3	A multivalent Ara-C-prodrug nanoconjugate achieves selective ablation of leukemic cells in an acute myeloid leukemia mouse model. Biomaterials, 2022, 280, 121258.	11.4	12
4	Time-Prolonged Release of Tumor-Targeted Protein–MMAE Nanoconjugates from Implantable Hybrid Materials. Pharmaceutics, 2022, 14, 192.	4.5	8
5	CXCR4-targeted nanotoxins induce GSDME-dependent pyroptosis in head and neck squamous cell carcinoma. Journal of Experimental and Clinical Cancer Research, 2022, 41, 49.	8.6	24
6	Engineering non-antibody human proteins as efficient scaffolds for selective, receptor-targeted drug delivery. Journal of Controlled Release, 2022, 343, 277-287.	9.9	7
7	The spectrum of building block conformers sustains the biophysical properties of clinically-oriented self-assembling protein nanoparticles. Science China Materials, 2022, 65, 1662-1670.	6.3	3
8	The Poly-Histidine Tag H6 Mediates Structural and Functional Properties of Disintegrating, Protein-Releasing Inclusion Bodies. Pharmaceutics, 2022, 14, 602.	4.5	9
9	A Novel CXCR4-Targeted Diphtheria Toxin Nanoparticle Inhibits Invasion and Metastatic Dissemination in a Head and Neck Squamous Cell Carcinoma Mouse Model. Pharmaceutics, 2022, 14, 887.	4.5	5
10	A diphtheria toxin-based nanoparticle achieves specific cytotoxic effect on CXCR4+ lymphoma cells without toxicity in immunocompromised and immunocompetent mice. Biomedicine and Pharmacotherapy, 2022, 150, 112940.	5.6	4
11	An In Silico Methodology That Facilitates Decision Making in the Engineering of Nanoscale Protein Materials. International Journal of Molecular Sciences, 2022, 23, 4958.	4.1	4
12	GSDMD-dependent pyroptotic induction by a multivalent CXCR4-targeted nanotoxin blocks colorectal cancer metastases. Drug Delivery, 2022, 29, 1384-1397.	5.7	16
13	SERS-Based Methodology for the Quantification of Ultratrace Graphene Oxide in Water Samples. Environmental Science & Technology, 2022, 56, 9527-9535.	10.0	3
14	Novel Endometrial Cancer Models Using Sensitive Metastasis Tracing for CXCR4-Targeted Therapy in Advanced Disease. Biomedicines, 2022, 10, 1680.	3.2	6
15	Design and engineering of tumor-targeted, dual-acting cytotoxic nanoparticles. Acta Biomaterialia, 2021, 119, 312-322.	8.3	14
16	Engineering the Performance of Artificial Inclusion Bodies Built of Catalytic β-Galactosidase. ACS Sustainable Chemistry and Engineering, 2021, 9, 2552-2558.	6.7	13
17	Specific Cytotoxic Effect of an Auristatin Nanoconjugate Towards CXCR4+ Diffuse Large B-Cell Lymphoma Cells. International Journal of Nanomedicine, 2021, Volume 16, 1869-1888.	6.7	16
18	In Vitro Fabrication of Microscale Secretory Granules. Advanced Functional Materials, 2021, 31, 2100914.	14.9	13

#	Article	IF	CITATIONS
19	Self-Assembled Nanobodies as Selectively Targeted, Nanostructured, and Multivalent Materials. ACS Applied Materials & Interfaces, 2021, 13, 29406-29415.	8.0	8
20	Biparatopic Protein Nanoparticles for the Precision Therapy of CXCR4+ Cancers. Cancers, 2021, 13, 2929.	3.7	11
21	Antineoplastic effect of a diphtheria toxin-based nanoparticle targeting acute myeloid leukemia cells overexpressing CXCR4. Journal of Controlled Release, 2021, 335, 117-129.	9.9	11
22	Biofabrication of functional protein nanoparticles through simple His-tag engineering. ACS Sustainable Chemistry and Engineering, 2021, 9, 12341-12354.	6.7	17
23	Rational engineering of a human GFP-like protein scaffold for humanized targeted nanomedicines. Acta Biomaterialia, 2021, 130, 211-222.	8.3	8
24	Polylactide, Processed by a Foaming Method Using Compressed Freon R134a, for Tissue Engineering. Polymers, 2021, 13, 3453.	4.5	0
25	Ion-dependent slow protein release from <i>inÂvivo</i> disintegrating micro-granules. Drug Delivery, 2021, 28, 2383-2391.	5.7	10
26	Antibacterial Activity of T22, a Specific Peptidic Ligand of the Tumoral Marker CXCR4. Pharmaceutics, 2021, 13, 1922.	4.5	5
27	Controlling self-assembling and tumor cell-targeting of protein-only nanoparticles through modular protein engineering. Science China Materials, 2020, 63, 147-156.	6.3	11
28	A CXCR4-targeted nanocarrier achieves highly selective tumor uptake in diffuse large B-cell lymphoma mouse models. Haematologica, 2020, 105, 741-753.	3.5	36
29	Endosomal escape of protein nanoparticles engineered through humanized histidine-rich peptides. Science China Materials, 2020, 63, 644-653.	6.3	15
30	Engineering Secretory Amyloids for Remote and Highly Selective Destruction of Metastatic Foci. Advanced Materials, 2020, 32, e1907348.	21.0	40
31	Keratinocytes are capable of selectively sensing low amounts of graphene-based materials: Implications for cutaneous applications. Carbon, 2020, 159, 598-610.	10.3	16
32	Artificial Inclusion Bodies for Clinical Development. Advanced Science, 2020, 7, 1902420.	11.2	36
33	Engineering a Nanostructured Nucleolin-Binding Peptide for Intracellular Drug Delivery in Triple-Negative Breast Cancer Stem Cells. ACS Applied Materials & Interfaces, 2020, 12, 5381-5388.	8.0	15
34	Self-assembling as regular nanoparticles dramatically minimizes photobleaching of tumour-targeted GFP. Acta Biomaterialia, 2020, 103, 272-280.	8.3	13
35	Divalent Cations: A Molecular Glue for Protein Materials. Trends in Biochemical Sciences, 2020, 45, 992-1003.	7.5	42
36	Release of functional fibroblast growth factor-2 from artificial inclusion bodies. Journal of Controlled Release, 2020, 327, 61-69.	9.9	16

3

#	Article	IF	CITATIONS
37	Nanostructured antimicrobial peptides: The last push towards clinics. Biotechnology Advances, 2020, 44, 107603.	11.7	71
38	Fluorescent Dye Labeling Changes the Biodistribution of Tumor-Targeted Nanoparticles. Pharmaceutics, 2020, 12, 1004.	4.5	25
39	Sublethal exposure of small few-layer graphene promotes metabolic alterations in human skin cells. Scientific Reports, 2020, 10, 18407.	3.3	15
40	Developing Protein–Antitumoral Drug Nanoconjugates as Bifunctional Antimicrobial Agents. ACS Applied Materials & Interfaces, 2020, 12, 57746-57756.	8.0	6
41	Engineering Protein Nanoparticles Out from Components of the Human Microbiome. Small, 2020, 16, 2001885.	10.0	17
42	A refined cocktailing of pro-apoptotic nanoparticles boosts anti-tumor activity. Acta Biomaterialia, 2020, 113, 584-596.	8.3	14
43	Nanostructured toxins for the selective destruction of drug-resistant human CXCR4+ colorectal cancer stem cells. Journal of Controlled Release, 2020, 320, 96-104.	9.9	48
44	Stable anchoring of bacteria-based protein nanoparticles for surface enhanced cell guidance. Journal of Materials Chemistry B, 2020, 8, 5080-5088.	5.8	11
45	An Auristatin nanoconjugate targeting CXCR4+ leukemic cells blocks acute myeloid leukemia dissemination. Journal of Hematology and Oncology, 2020, 13, 36.	17.0	39
46	Selective delivery of T22-PE24-H6 to CXCR4 ⁺ diffuse large B-cell lymphoma cells leads to wide therapeutic index in a disseminated mouse model. Theranostics, 2020, 10, 5169-5180.	10.0	22
47	Engineering Protein Venoms as Selfâ€Assembling CXCR4â€Targeted Cytotoxic Nanoparticles. Particle and Particle Systems Characterization, 2020, 37, 2000040.	2.3	9
48	Targeting Antitumoral Proteins to Breast Cancer by Local Administration of Functional Inclusion Bodies. Advanced Science, 2019, 6, 1900849.	11.2	34
49	Nanostructure Empowers Active Tumor Targeting in Ligandâ€Based Molecular Delivery. Particle and Particle Systems Characterization, 2019, 36, 1900304.	2.3	9
50	Collaborative membrane activity and receptor-dependent tumor cell targeting for precise nanoparticle delivery in CXCR4+ colorectal cancer. Acta Biomaterialia, 2019, 99, 426-432.	8.3	11
51	High-Throughput Cell Motility Studies on Surface-Bound Protein Nanoparticles with Diverse Structural and Compositional Characteristics. ACS Biomaterials Science and Engineering, 2019, 5, 5470-5480.	5.2	7
52	Protein-driven nanomedicines in oncotherapy. Current Opinion in Pharmacology, 2019, 47, 1-7.	3.5	21
53	Engineering a recombinant chlorotoxin as cell-targeted cytotoxic nanoparticles. Science China Materials, 2019, 62, 892-898.	6.3	11
54	Few layer graphene does not affect the function and the autophagic activity of primary lymphocytes. Nanoscale, 2019, 11, 10493-10503.	5.6	8

#	Article	IF	CITATIONS
55	An Increase in Membrane Cholesterol by Graphene Oxide Disrupts Calcium Homeostasis in Primary Astrocytes. Small, 2019, 15, e1900147.	10.0	37
56	Efficient bioactive oligonucleotideâ€protein conjugation for cellâ€ŧargeted cancer therapy. ChemistryOpen, 2019, 8, 382-387.	1.9	7
57	Recruiting potent membrane penetrability in tumor cell-targeted protein-only nanoparticles. Nanotechnology, 2019, 30, 115101.	2.6	11
58	Bacterial inclusion bodies are industrially exploitable amyloids. FEMS Microbiology Reviews, 2019, 43, 53-72.	8.6	77
59	Assembly of histidine-rich protein materials controlled through divalent cations. Acta Biomaterialia, 2019, 83, 257-264.	8.3	49
60	Release of targeted protein nanoparticles from functional bacterial amyloids: A death star-like approach. Journal of Controlled Release, 2018, 279, 29-39.	9.9	30
61	Self-assembling toxin-based nanoparticles as self-delivered antitumoral drugs. Journal of Controlled Release, 2018, 274, 81-92.	9.9	55
62	Protein nanoparticles are nontoxic, tuneable cell stressors. Nanomedicine, 2018, 13, 255-268.	3.3	9
63	Protein-Based Therapeutic Killing for Cancer Therapies. Trends in Biotechnology, 2018, 36, 318-335.	9.3	98
64	Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment. ACS Nano, 2018, 12, 10582-10620.	14.6	438
65	Selective depletion of metastatic stem cells as therapy for human colorectal cancer. EMBO Molecular Medicine, 2018, 10, .	6.9	64
66	Selective CXCR4 ⁺ Cancer Cell Targeting and Potent Antineoplastic Effect by a Nanostructured Version of Recombinant Ricin. Small, 2018, 14, e1800665.	10.0	40
67	Switching cell penetrating and CXCR4-binding activities of nanoscale-organized arginine-rich peptides. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1777-1786.	3.3	12
68	Conformational Conversion during Controlled Oligomerization into Nonamylogenic Protein Nanoparticles. Biomacromolecules, 2018, 19, 3788-3797.	5.4	18
69	Surface-Bound Gradient Deposition of Protein Nanoparticles for Cell Motility Studies. ACS Applied Materials & Interfaces, 2018, 10, 25779-25786.	8.0	9
70	Degradation of Singleâ€Layer and Fewâ€Layer Graphene by Neutrophil Myeloperoxidase. Angewandte Chemie, 2018, 130, 11896-11901.	2.0	9
71	Degradation of Singleâ€Layer and Fewâ€Layer Graphene by Neutrophil Myeloperoxidase. Angewandte Chemie - International Edition, 2018, 57, 11722-11727.	13.8	135
72	Graphene Oxide Upregulates the Homeostatic Functions of Primary Astrocytes and Modulates Astrocyte-to-Neuron Communication. Nano Letters, 2018, 18, 5827-5838.	9.1	47

Esther Vazquez

#	Article	IF	CITATIONS
73	Differential effects of graphene materials on the metabolism and function of human skin cells. Nanoscale, 2018, 10, 11604-11615.	5.6	44
74	Few‣ayer Graphene Kills Selectively Tumor Cells from Myelomonocytic Leukemia Patients. Angewandte Chemie - International Edition, 2017, 56, 3014-3019.	13.8	59
75	Bacterial Inclusion Bodies: Discovering Their Better Half. Trends in Biochemical Sciences, 2017, 42, 726-737.	7.5	134
76	Intrinsic functional and architectonic heterogeneity of tumor-targeted protein nanoparticles. Nanoscale, 2017, 9, 6427-6435.	5.6	21
77	Engineering tumor cell targeting in nanoscale amyloidal materials. Nanotechnology, 2017, 28, 015102.	2.6	24
78	Engineering multifunctional protein nanoparticles by <i>in vitro</i> disassembling and reassembling of heterologous building blocks. Nanotechnology, 2017, 28, 505102.	2.6	12
79	Graphene Improves the Biocompatibility of Polyacrylamide Hydrogels: 3D Polymeric Scaffolds for Neuronal Growth. Scientific Reports, 2017, 7, 10942.	3.3	87
80	Peptideâ€Based Nanostructured Materials with Intrinsic Proapoptotic Activities in CXCR4 ⁺ Solid Tumors. Advanced Functional Materials, 2017, 27, 1700919.	14.9	32
81	Promises, facts and challenges for graphene in biomedical applications. Chemical Society Reviews, 2017, 46, 4400-4416.	38.1	564
82	Protein-only, antimicrobial peptide-containing recombinant nanoparticles with inherent built-in antibacterial activity. Acta Biomaterialia, 2017, 60, 256-263.	8.3	26
83	Targeting in Cancer Therapies. Medical Sciences (Basel, Switzerland), 2016, 4, 6.	2.9	7
84	Bacterial mimetics of endocrine secretory granules as immobilized in vivo depots for functional protein drugs. Scientific Reports, 2016, 6, 35765.	3.3	28
85	CXCR4 ⁺ -targeted protein nanoparticles produced in the food-grade bacterium <i>Lactococcus lactis</i> . Nanomedicine, 2016, 11, 2387-2398.	3.3	10
86	Functional recruitment for drug delivery through protein-based nanotechnologies. Nanomedicine, 2016, 11, 1333-1336.	3.3	20
87	Recombinant pharmaceuticals from microbial cells: a 2015 update. Microbial Cell Factories, 2016, 15, 33.	4.0	265
88	Conformational and functional variants of CD44-targeted protein nanoparticles bio-produced in bacteria. Biofabrication, 2016, 8, 025001.	7.1	15
89	Cancer-specific uptake of a liganded protein nanocarrier targeting aggressive CXCR4 + colorectal cancer models. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1987-1996.	3.3	34
90	Functional inclusion bodies produced in the yeast Pichia pastoris. Microbial Cell Factories, 2016, 15, 166.	4.0	32

#	Article	IF	CITATIONS
91	Structural and functional features of self-assembling protein nanoparticles produced in endotoxin-free Escherichia coli. Microbial Cell Factories, 2016, 15, 59.	4.0	13
92	Cellular uptake and intracellular fate of protein releasing bacterial amyloids in mammalian cells. Soft Matter, 2016, 12, 3451-3460.	2.7	36
93	Rational engineering of single-chain polypeptides into protein-only, BBB-targeted nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1241-1251.	3.3	26
94	Bottomâ€Up Instructive Quality Control in the Biofabrication of Smart Protein Materials. Advanced Materials, 2015, 27, 7816-7822.	21.0	61
95	Formulating tumor-homing peptides as regular nanoparticles enhances receptor-mediated cell penetrability. Materials Letters, 2015, 154, 140-143.	2.6	8
96	Integrating mechanical and biological control of cell proliferation through bioinspired multieffector materials. Nanomedicine, 2015, 10, 873-891.	3.3	20
97	Dialysis: A Characterization Method of Aggregation Tendency. Methods in Molecular Biology, 2015, 1258, 321-330.	0.9	2
98	Towards protein-based viral mimetics for cancer therapies. Trends in Biotechnology, 2015, 33, 253-258.	9.3	65
99	Dispersibilityâ€Dependent Biodegradation of Graphene Oxide by Myeloperoxidase. Small, 2015, 11, 3985-3994.	10.0	215
100	Nanocomposite Hydrogels: 3D Polymer–Nanoparticle Synergies for On-Demand Drug Delivery. ACS Nano, 2015, 9, 4686-4697.	14.6	624
101	Targeting low-density lipoprotein receptors with protein-only nanoparticles. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	2
102	Engineering protein self-assembling in protein-based nanomedicines for drug delivery and gene therapy. Critical Reviews in Biotechnology, 2015, 35, 209-221.	9.0	50
103	Higher metastatic efficiency of KRas G12V than KRas G13D in a colorectal cancer model. FASEB Journal, 2015, 29, 464-476.	0.5	43
104	Recombinant protein materials for bioengineering and nanomedicine. Nanomedicine, 2014, 9, 2817-2828.	3.3	33
105	Improving protein delivery of fibroblast growth factor-2 from bacterial inclusion bodies used as cell culture substrates. Acta Biomaterialia, 2014, 10, 1354-1359.	8.3	35
106	Intracellular targeting of CD44+ cells with self-assembling, protein only nanoparticles. International Journal of Pharmaceutics, 2014, 473, 286-295.	5.2	38
107	Subcutaneous preconditioning increases invasion and metastatic dissemination in colorectal cancer models. DMM Disease Models and Mechanisms, 2014, 7, 387-96.	2.4	8
108	Sheltering DNA in self-organizing, protein-only nano-shells as artificial viruses for gene delivery. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 535-541.	3.3	27

#	Article	IF	CITATIONS
109	<i>In Vivo</i> Architectonic Stability of Fully <i>de Novo</i> Designed Protein-Only Nanoparticles. ACS Nano, 2014, 8, 4166-4176.	14.6	89
110	Classification Framework for Grapheneâ€Based Materials. Angewandte Chemie - International Edition, 2014, 53, 7714-7718.	13.8	369
111	Topographically targeted osteogenesis of mesenchymal stem cells stimulated by inclusion bodies attached to polycaprolactone surfaces. Nanomedicine, 2014, 9, 207-220.	3.3	25
112	Comparative analysis of lentiviral vectors and modular protein nanovectors for traumatic brain injury gene therapy. Molecular Therapy - Methods and Clinical Development, 2014, 1, 14047.	4.1	6
113	Functionalization of 3D scaffolds with protein-releasing biomaterials for intracellular delivery. Journal of Controlled Release, 2013, 171, 63-72.	9.9	22
114	Multifunctional Nanovesicle-Bioactive Conjugates Prepared by a One-Step Scalable Method Using CO ₂ -Expanded Solvents. Nano Letters, 2013, 13, 3766-3774.	9.1	40
115	Supramolecular organization of protein-releasing functional amyloids solved in bacterial inclusion bodies. Acta Biomaterialia, 2013, 9, 6134-6142.	8.3	65
116	Two-Dimensional Microscale Engineering of Protein-Based Nanoparticles for Cell Guidance. ACS Nano, 2013, 7, 4774-4784.	14.6	32
117	Microbial biofabrication for nanomedicine: biomaterials, nanoparticles and beyond. Nanomedicine, 2013, 8, 1895-1898.	3.3	25
118	A nanostructured bacterial bioscaffold for the sustained bottom-up delivery of protein drugs. Nanomedicine, 2013, 8, 1587-1599.	3.3	26
119	Improved performance of proteinâ€based recombinant gene therapy vehicles by tuning downstream procedures. Biotechnology Progress, 2013, 29, 1458-1463.	2.6	1
120	RGD-based cell ligands for cell-targeted drug delivery act as potent trophic factors. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 1263-1266.	3.3	16
121	Bioadhesiveness and efficient mechanotransduction stimuli synergistically provided by bacterial inclusion bodies as scaffolds for tissue engineering. Nanomedicine, 2012, 7, 79-93.	3.3	40
122	Biodegradable Poly(vinyl alcohol)-polyethylenimine Nanocomposites for Enhanced Gene Expression In Vitro and In Vivo. Biomacromolecules, 2012, 13, 73-83.	5.4	31
123	Packaging protein drugs as bacterial inclusion bodies for therapeutic applications. Microbial Cell Factories, 2012, 11, 76.	4.0	52
124	Non-amyloidogenic peptide tags for the regulatable self-assembling of protein-only nanoparticles. Biomaterials, 2012, 33, 8714-8722.	11.4	65
125	Intracellular CXCR4+ cell targeting with T22-empowered protein-only nanoparticles. International Journal of Nanomedicine, 2012, 7, 4533.	6.7	61
126	Nanopills: Functional Inclusion Bodies Produced in Bacteria as Naturally Occurring Nanopills for Advanced Cell Therapies (Adv. Mater. 13/2012). Advanced Materials, 2012, 24, 1741-1741.	21.0	0

#	Article	IF	CITATIONS
127	Bacterial inclusion bodies: making gold from waste. Trends in Biotechnology, 2012, 30, 65-70.	9.3	157
128	Functional Inclusion Bodies Produced in Bacteria as Naturally Occurring Nanopills for Advanced Cell Therapies. Advanced Materials, 2012, 24, 1742-1747.	21.0	67
129	Engineered Biological Entities for Drug Delivery and Gene Therapy. Progress in Molecular Biology and Translational Science, 2011, 104, 247-298.	1.7	10
130	Analytical Approaches for Assessing Aggregation of Protein Biopharmaceuticals. Current Pharmaceutical Biotechnology, 2011, 12, 1530-1536.	1.6	13
131	Biological activities of histidine-rich peptides; merging biotechnology and nanomedicine. Microbial Cell Factories, 2011, 10, 101.	4.0	47
132	Post-production protein stability: trouble beyond the cell factory. Microbial Cell Factories, 2011, 10, 60.	4.0	39
133	Integrated approach to produce a recombinant, hisâ€ŧagged human αâ€galactosidase a in mammalian cells. Biotechnology Progress, 2011, 27, 1206-1217.	2.6	17
134	Nanoparticulate architecture of protein-based artificial viruses is supported by protein–DNA interactions. Nanomedicine, 2011, 6, 1047-1061.	3.3	14
135	Engineering building blocks for self-assembling protein nanoparticles. Microbial Cell Factories, 2010, 9, 101.	4.0	29
136	The nanoscale properties of bacterial inclusion bodies and their effect on mammalian cell proliferation. Biomaterials, 2010, 31, 5805-5812.	11.4	67
137	Internalization and kinetics of nuclear migration of protein-only, arginine-rich nanoparticles. Biomaterials, 2010, 31, 9333-9339.	11.4	22
138	Protein nanodisk assembling and intracellular trafficking powered by an arginine-rich (R9) peptide. Nanomedicine, 2010, 5, 259-268.	3.3	59
139	Protein Aggregation and Soluble Aggregate Formation Screened by a Fast Microdialysis Assay. Journal of Biomolecular Screening, 2010, 15, 453-457.	2.6	12
140	Tunable geometry of bacterial inclusion bodies as substrate materials for tissue engineering. Nanotechnology, 2010, 21, 205101.	2.6	62
141	Modular Protein Engineering in Emerging Cancer Therapies. Current Pharmaceutical Design, 2009, 15, 893-916.	1.9	38
142	Surface Cell Growth Engineering Assisted by a Novel Bacterial Nanomaterial. Advanced Materials, 2009, 21, 4249-4253.	21.0	73
143	The progesterone receptor regulates the expression of TRPV4 channel. Pflugers Archiv European Journal of Physiology, 2009, 459, 105-113.	2.8	50
144	Microbial factories for recombinant pharmaceuticals. Microbial Cell Factories, 2009, 8, 17.	4.0	349

#	Article	IF	CITATIONS
145	Functional coupling of TRPV4 cationic channel and large conductance, calcium-dependent potassium channel in human bronchial epithelial cell lines. Pflugers Archiv European Journal of Physiology, 2008, 457, 149-159.	2.8	63
146	Peptide-assisted traffic engineering for nonviral gene therapy. Drug Discovery Today, 2008, 13, 1067-1074.	6.4	41
147	Membrane-active peptides for non-viral gene therapy: making the safest easier. Trends in Biotechnology, 2008, 26, 267-275.	9.3	85
148	Genetic variation in the KCNMA1 potassium channel $\hat{I}\pm$ subunit as risk factor for severe essential hypertension and myocardial infarction. Journal of Hypertension, 2008, 26, 2147-2153.	0.5	43
149	A review of TRP channels splicing. Seminars in Cell and Developmental Biology, 2006, 17, 607-617.	5.0	35
150	Protective Effect of the KCNMB1 E65K Genetic Polymorphism Against Diastolic Hypertension in Aging Women and Its Relevance to Cardiovascular Risk. Circulation Research, 2005, 97, 1360-1365.	4.5	78
151	TRPV4 channel is involved in the coupling of fluid viscosity changes to epithelial ciliary activity. Journal of Cell Biology, 2005, 168, 869-874.	5.2	199
152	Swelling-activated Ca2+ Entry via TRPV4 Channel Is Defective in Cystic Fibrosis Airway Epithelia. Journal of Biological Chemistry, 2004, 279, 54062-54068.	3.4	159
153	Swelling-Activated Calcium-Dependent Potassium Channels In Airway Epithelial Cells. , 2004, , 388-389.		0
154	Gain-of-function mutation in the KCNMB1 potassium channel subunit is associated with low prevalence of diastolic hypertension. Journal of Clinical Investigation, 2004, 113, 1032-1039.	8.2	155
155	Plasma Membrane Voltage-dependent Anion Channel Mediates Antiestrogen-activated Maxi Cl– Currents in C1300 Neuroblastoma Cells. Journal of Biological Chemistry, 2003, 278, 33284-33289.	3.4	57
156	Maxi K ⁺ channel mediates regulatory volume decrease response in a human bronchial epithelial cell line. American Journal of Physiology - Cell Physiology, 2002, 283, C1705-C1714.	4.6	99
157	Murine CFTR Channel and its Role in Regulatory Volume Decrease of Small Intestine Crypts. Cellular Physiology and Biochemistry, 2000, 10, 321-328.	1.6	28
158	Survival of inner ear sensory neurons in trk mutant mice. Mechanisms of Development, 1997, 64, 77-85.	1.7	26
159	Expression of the cytoskeletal protein MAP5 and its regulation by neurotrophin 3 (NT3) in the inner ear sensory neurons. Anatomy and Embryology, 1997, 195, 299-310.	1.5	10
160	Pattern of trkB protein-like immunoreactivity in vivo and the in vitro effects of brain-derived neurotrophic factor (BDNF) on developing cochlear and vestibular neurons. Anatomy and Embryology, 1994, 189, 157-67.	1.5	41
161	Developmental changes in nerve growth factor (NGF) binding and NGF receptor proteins trkA and p75 in the facial nerve. Anatomy and Embryology, 1994, 190, 73-85.	1.5	4