Milad Ashrafizadeh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/768477/publications.pdf

Version: 2024-02-01

192 papers

10,185 citations

56 h-index ⁵³²³⁰ **85**

g-index

195 all docs

195 docs citations

times ranked

195

8388 citing authors

#	Article	IF	CITATIONS
1	The effects of <i>Berberis vulgaris</i> L. and <i>Berberis aristata</i> L. in metabolic syndrome patients: a systematic and meta-analysis study. Archives of Physiology and Biochemistry, 2023, 129, 393-404.	2.1	14
2	(Nano)platforms in bladder cancer therapy: Challenges and opportunities. Bioengineering and Translational Medicine, 2023, 8, .	7.1	46
3	Autophagy as a molecular target of quercetin underlying its protective effects in human diseases. Archives of Physiology and Biochemistry, 2022, 128, 200-208.	2.1	39
4	Dual role of quercetin in enhancing the efficacy of cisplatin in chemotherapy and protection against its side effects: a review. Archives of Physiology and Biochemistry, 2022, 128, 1438-1452.	2.1	27
5	Curcumin and blood lipid levels: an updated systematic review and meta-analysis of randomised clinical trials. Archives of Physiology and Biochemistry, 2022, 128, 1493-1502.	2.1	9
6	Astaxanthin and Nrf2 Signaling Pathway: A Novel Target for New Therapeutic Approaches. Mini-Reviews in Medicinal Chemistry, 2022, 22, 312-321.	2.4	8
7	Long non-coding RNAs as new players in bladder cancer: Lessons from pre-clinical and clinical studies. Life Sciences, 2022, 288, 119948.	4.3	26
8	Long noncoding RNAs: A novel insight in the leukemogenesis and drug resistance in acute myeloid leukemia. Journal of Cellular Physiology, 2022, 237, 450-465.	4.1	28
9	Metabolic impact of saffron and crocin: an updated systematic and meta-analysis of randomised clinical trials. Archives of Physiology and Biochemistry, 2022, 128, 666-678.	2.1	14
10	Curcumin and its derivatives in cancer therapy: Potentiating antitumor activity of cisplatin and reducing side effects. Phytotherapy Research, 2022, 36, 189-213.	5.8	94
11	Advances in understanding the role of P-gp in doxorubicin resistance: Molecular pathways, therapeutic strategies, and prospects. Drug Discovery Today, 2022, 27, 436-455.	6.4	87
12	Gene regulation by antisense transcription: A focus on neurological and cancer diseases. Biomedicine and Pharmacotherapy, 2022, 145, 112265.	5.6	33
13	Mesoporous Bioactive Glasses in Cancer Diagnosis and Therapy: Stimuliâ€Responsive, Toxicity, Immunogenicity, and Clinical Translation. Advanced Science, 2022, 9, e2102678.	11.2	76
14	AMPK signaling in diabetes mellitus, insulin resistance and diabetic complications: A pre-clinical and clinical investigation. Biomedicine and Pharmacotherapy, 2022, 146, 112563.	5.6	95
15	EZH2 as a new therapeutic target in brain tumors: Molecular landscape, therapeutic targeting and future prospects. Biomedicine and Pharmacotherapy, 2022, 146, 112532.	5.6	24
16	Targeted regulation of autophagy using nanoparticles: New insight into cancer therapy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166326.	3.8	35
17	Role of Tumor Microenvironment in Cancer Stem Cells Resistance to Radiotherapy. Current Cancer Drug Targets, 2022, 22, 18-30.	1.6	19
18	Folic Acid-Adorned Curcumin-Loaded Iron Oxide Nanoparticles for Cervical Cancer. ACS Applied Bio Materials, 2022, 5, 1305-1318.	4.6	65

#	Article	IF	Citations
19	lonic Liquid-Assisted Fabrication of Bioactive Heterogeneous Magnetic Nanocatalyst with Antioxidant and Antibacterial Activities for the Synthesis of Polyhydroquinoline Derivatives. Molecules, 2022, 27, 1748.	3.8	13
20	Exosomes as Promising Nanostructures in Diabetes Mellitus: From Insulin Sensitivity to Ameliorating Diabetic Complications. International Journal of Nanomedicine, 2022, Volume 17, 1229-1253.	6.7	25
21	Imperatorin Attenuates the Proliferation of MCF-7 Cells in Combination with Radiotherapy or Hyperthermia. Current Radiopharmaceuticals, 2022, 15, 236-241.	0.8	5
22	Targeting autophagy in prostate cancer: preclinical and clinical evidence for therapeutic response. Journal of Experimental and Clinical Cancer Research, 2022, 41, 105.	8.6	67
23	The long and short non-coding RNAs modulating EZH2 signaling in cancer. Journal of Hematology and Oncology, 2022, 15, 18.	17.0	89
24	Doxorubicin-loaded graphene oxide nanocomposites in cancer medicine: stimuli-responsive carriers, co-delivery and suppressing resistance. Expert Opinion on Drug Delivery, 2022, 19, 355-382.	5.0	41
25	Detection of Dopamine Receptors Using Nanoscale Dendrimer for Potential Application in Targeted Delivery and Whole-Body Imaging: Synthesis and <i>In Vivo</i> Organ Distribution. ACS Applied Bio Materials, 2022, 5, 1744-1755.	4.6	2
26	Non-coding RNAs and macrophage interaction in tumor progression. Critical Reviews in Oncology/Hematology, 2022, 173, 103680.	4.4	28
27	The association of clinicopathological characterizations of colorectal cancer with membrane-bound mucins genes and LncRNAs. Pathology Research and Practice, 2022, 233, 153883.	2.3	4
28	Multifunctional Tetracycline-Loaded Silica-Coated Core–Shell Magnetic Nanoparticles: Antibacterial, Antibiofilm, and Cytotoxic Activities. ACS Applied Bio Materials, 2022, 5, 1731-1743.	4.6	11
29	Transforming growth factor-beta (TGF- \hat{l}^2) in prostate cancer: A dual function mediator?. International Journal of Biological Macromolecules, 2022, 206, 435-452.	7.5	34
30	Bioactive hybrid metal-organic framework (MOF)-based nanosensors for optical detection of recombinant SARS-CoV-2 spike antigen. Science of the Total Environment, 2022, 825, 153902.	8.0	31
31	Bioengineering of green-synthesized silver nanoparticles: In vitro physicochemical, antibacterial, biofilm inhibitory, anticoagulant, and antioxidant performance. Talanta, 2022, 243, 123374.	5.5	68
32	Resveratrol Augments Doxorubicin and Cisplatin Chemotherapy: A Novel Therapeutic Strategy. Current Molecular Pharmacology, 2022, 15, .	1.5	4
33	Long non-coding RNAs and exosomal IncRNAs: Potential functions in lung cancer progression, drug resistance and tumor microenvironment remodeling. Biomedicine and Pharmacotherapy, 2022, 150, 112963.	5.6	47
34	Long noncoding RNAs (IncRNAs) in pancreatic cancer progression. Drug Discovery Today, 2022, 27, 2181-2198.	6.4	36
35	Non-coding RNA-based regulation of inflammation. Seminars in Immunology, 2022, 59, 101606.	5.6	40
36	Photoactive polymers-decorated Cu-Al layered double hydroxide hexagonal architectures: A potential non-viral vector for photothermal therapy and co-delivery of DOX/pCRISPR. Chemical Engineering Journal, 2022, 448, 137747.	12.7	24

#	Article	IF	CITATIONS
37	Emerging role of exosomes in cancer progression and tumor microenvironment remodeling. Journal of Hematology and Oncology, 2022, 15 , .	17.0	182
38	Molecular Landscape of LncRNAs in Prostate Cancer: A focus on pathways and therapeutic targets for intervention. Journal of Experimental and Clinical Cancer Research, 2022, 41, .	8.6	69
39	Nanotechnological Approaches in Prostate Cancer Therapy: Integration of engineering and biology. Nano Today, 2022, 45, 101532.	11.9	46
40	Low toxicity in hematological and biomedical parameters caused by bupernorphine in lactating female rats and their newborns. Toxin Reviews, 2021, 40, 1280-1288.	3.4	0
41	Recent advances and future directions in antiâ€ŧumor activity of cryptotanshinone: A mechanistic review. Phytotherapy Research, 2021, 35, 155-179.	5.8	21
42	Venom peptides in cancer therapy: An updated review on cellular and molecular aspects. Pharmacological Research, 2021, 164, 105327.	7.1	16
43	Lung cancer cells and their sensitivity/resistance to cisplatin chemotherapy: Role of microRNAs and upstream mediators. Cellular Signalling, 2021, 78, 109871.	3.6	82
44	Curcumin and inflammatory bowel diseases: From in vitro studies to clinical trials. Molecular Immunology, 2021, 130, 20-30.	2.2	36
45	MicroRNA-mediated autophagy regulation in cancer therapy: The role in chemoresistance/chemosensitivity. European Journal of Pharmacology, 2021, 892, 173660.	3.5	48
46	Functionalization of polymers and nanomaterials for water treatment, food packaging, textile and biomedical applications: a review. Environmental Chemistry Letters, 2021, 19, 583-611.	16.2	112
47	Artemisia Species as a New Candidate for Diabetes Therapy: A Comprehensive Review. Current Molecular Medicine, 2021, 21, 832-849.	1.3	4
48	Flavonoids Targeting HIF-1: Implications on Cancer Metabolism. Cancers, 2021, 13, 130.	3.7	57
49	Novel Strategy in Breast Cancer Therapy: Revealing The Bright Side of Ginsenosides. Current Molecular Pharmacology, 2021, 14, 1093-1111.	1.5	10
50	Paving the Road Toward Exploiting the Therapeutic Effects of Ginsenosides: An Emphasis on Autophagy and Endoplasmic Reticulum Stress. Advances in Experimental Medicine and Biology, 2021, 1308, 137-160.	1.6	4
51	Pre-clinical investigation of STAT3 pathway in bladder cancer: Paving the way for clinical translation. Biomedicine and Pharmacotherapy, 2021, 133, 111077.	5.6	31
52	MicroRNAs regulating SOX2 in cancer progression and therapy response. Expert Reviews in Molecular Medicine, 2021, 23, e13.	3.9	17
53	Anti-tumor activity of resveratrol against gastric cancer: a review of recent advances with an emphasis on molecular pathways. Cancer Cell International, 2021, 21, 66.	4.1	40
54	A bioengineering method for modeling alveolar Rhabdomyosarcoma and assessing chemotherapy responses. MethodsX, 2021, 8, 101473.	1.6	12

#	Article	IF	CITATIONS
55	Crosstalk of Long Non-coding RNAs and EMT: Searching the Missing Pieces of an Incomplete Puzzle for Lung Cancer Therapy. Current Cancer Drug Targets, 2021, 21, 640-665.	1.6	20
56	Small in Size, but Large in Action: microRNAs as Potential Modulators of PTEN in Breast and Lung Cancers. Biomolecules, 2021, 11, 304.	4.0	40
57	Drug Delivery (Nano)Platforms for Oral and Dental Applications: Tissue Regeneration, Infection Control, and Cancer Management. Advanced Science, 2021, 8, 2004014.	11.2	100
58	Pyrazole-based analogs as potential antibacterial agents against methicillin-resistance staphylococcus aureus (MRSA) and its SAR elucidation. European Journal of Medicinal Chemistry, 2021, 212, 113134.	5 . 5	92
59	Nrf2 Signaling Pathway in Chemoprotection and Doxorubicin Resistance: Potential Application in Drug Discovery. Antioxidants, 2021, 10, 349.	5.1	65
60	Curcumin Efficacy in a Serum/Glucose Deprivation-Induced Neuronal PC12 Injury Model. Current Molecular Pharmacology, 2021, 14, 1146-1155.	1.5	14
61	Biological and Therapeutic Effects of Troxerutin: Molecular Signaling Pathways Come into View. Journal of Pharmacopuncture, 2021, 24, 1-13.	1.1	19
62	Quercetin and Its Nano-Scale Delivery Systems in Prostate Cancer Therapy: Paving the Way for Cancer Elimination and Reversing Chemoresistance. Cancers, 2021, 13, 1602.	3.7	43
63	Anti-Inflammatory Activity of Melatonin: a Focus on the Role of NLRP3 Inflammasome. Inflammation, 2021, 44, 1207-1222.	3.8	33
64	Injectable hyaluronic acid-based antibacterial hydrogel adorned with biogenically synthesized AgNPs-decorated multi-walled carbon nanotubes. Progress in Biomaterials, 2021, 10, 77-89.	4.5	14
65	New Insight into Triple-Negative Breast Cancer Therapy: The Potential Roles of Endoplasmic Reticulum Stress and Autophagy Mechanisms. Anti-Cancer Agents in Medicinal Chemistry, 2021, 21, 679-691.	1.7	3
66	The role of microRNA-338-3p in cancer: growth, invasion, chemoresistance, and mediators. Life Sciences, 2021, 268, 119005.	4.3	55
67	Resveratrol Induces Apoptosis and Attenuates Proliferation of MCF-7 Cells in Combination with Radiation and Hyperthermia. Current Molecular Medicine, 2021, 21, 142-150.	1.3	21
68	Curcumin and cardiovascular diseases: Focus on cellular targets and cascades. Biomedicine and Pharmacotherapy, 2021, 136, 111214.	5.6	65
69	Elucidating Role of Reactive Oxygen Species (ROS) in Cisplatin Chemotherapy: A Focus on Molecular Pathways and Possible Therapeutic Strategies. Molecules, 2021, 26, 2382.	3.8	63
70	Dual relationship between long non-coding RNAs and STAT3 signaling in different cancers: New insight to proliferation and metastasis. Life Sciences, 2021, 270, 119006.	4.3	49
71	A review on chemistry, source and therapeutic potential of lambertianic acid. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2021, 76, 347-356.	1.4	1
72	Biomedical application of chitosan-based nanoscale delivery systems: Potential usefulness in siRNA delivery for cancer therapy. Carbohydrate Polymers, 2021, 260, 117809.	10.2	103

#	Article	IF	CITATIONS
73	Roles of Nrf2 in Gastric Cancer: Targeting for Therapeutic Strategies. Molecules, 2021, 26, 3157.	3.8	23
74	Nrf2 signaling pathway in cisplatin chemotherapy: Potential involvement in organ protection and chemoresistance. Pharmacological Research, 2021, 167, 105575.	7.1	84
75	Small interfering RNA (siRNA) to target genes and molecular pathways in glioblastoma therapy: Current status with an emphasis on delivery systems. Life Sciences, 2021, 275, 119368.	4.3	63
76	Flavonoids against the SARS-CoV-2 induced inflammatory storm. Biomedicine and Pharmacotherapy, 2021, 138, 111430.	5.6	102
77	Protective Effect of Resveratrol against Glioblastoma: A Review. Anti-Cancer Agents in Medicinal Chemistry, 2021, 21, 1216-1227.	1.7	7
78	Long non-coding RNAs in the doxorubicin resistance of cancer cells. Cancer Letters, 2021, 508, 104-114.	7.2	118
79	The role of SOX family transcription factors in gastric cancer. International Journal of Biological Macromolecules, 2021, 180, 608-624.	7.5	39
80	Self-assembled peptide and protein nanostructures for anti-cancer therapy: Targeted delivery, stimuli-responsive devices and immunotherapy. Nano Today, 2021, 38, 101119.	11.9	135
81	Employing siRNA tool and its delivery platforms in suppressing cisplatin resistance: Approaching to a new era of cancer chemotherapy. Life Sciences, 2021, 277, 119430.	4.3	68
82	Regulation of Nuclear Factor-KappaB (NF-κB) signaling pathway by non-coding RNAs in cancer: Inhibiting or promoting carcinogenesis?. Cancer Letters, 2021, 509, 63-80.	7.2	166
83	Interplay between SOX9 transcription factor and microRNAs in cancer. International Journal of Biological Macromolecules, 2021, 183, 681-694.	7.5	39
84	Therapeutic potential of AMPK signaling targeting in lung cancer: Advances, challenges and future prospects. Life Sciences, 2021, 278, 119649.	4.3	37
85	New insight towards development of paclitaxel and docetaxel resistance in cancer cells: EMT as a novel molecular mechanism and therapeutic possibilities. Biomedicine and Pharmacotherapy, 2021, 141, 111824.	5.6	106
86	Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer. Pharmacological Research, 2021, 171, 105759.	7.1	90
87	In response to "Comment on "Regulation of Nuclear Factor-KappaB (NF-κB) signaling pathway by non-coding RNAs in cancer: Inhibiting or promoting carcinogenesis?―Cancer Lett. 2021 May 2; 509 (2021) 63–80― Cancer Letters, 2021, 516, 36-37.	7.2	3
88	Antimicrobial peptides as potential therapeutics for breast cancer. Pharmacological Research, 2021, 171, 105777.	7.1	22
89	A review study on the modulation of SIRT1 expression by miRNAs in aging and age-associated diseases. International Journal of Biological Macromolecules, 2021, 188, 52-61.	7.5	23
90	The involvement of epithelial-to-mesenchymal transition in doxorubicin resistance: Possible molecular targets. European Journal of Pharmacology, 2021, 908, 174344.	3.5	25

#	Article	IF	CITATIONS
91	Benzimidazole analogues as efficient arsenals in war against methicillin-resistance staphylococcus aureus (MRSA) and its SAR studies. Bioorganic Chemistry, 2021, 115, 105175.	4.1	49
92	Hyaluronic acid-based nanoplatforms for Doxorubicin: A review of stimuli-responsive carriers, co-delivery and resistance suppression. Carbohydrate Polymers, 2021, 272, 118491.	10.2	100
93	Revealing the role of miRNA-489 as a new onco-suppressor factor in different cancers based on pre-clinical and clinical evidence. International Journal of Biological Macromolecules, 2021, 191, 727-737.	7.5	33
94	Gallic acid for cancer therapy: Molecular mechanisms and boosting efficacy by nanoscopical delivery. Food and Chemical Toxicology, 2021, 157, 112576.	3.6	50
95	C-Myc Signaling Pathway in Treatment and Prevention of Brain Tumors. Current Cancer Drug Targets, 2021, 2-20.	1.6	15
96	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq0 0 0 rgBT /Overlock	10 Jf ₁ 50 5	42 Td (editio 1,430
97	Resveratrol as an Enhancer of Apoptosis in Cancer: A Mechanistic Review. Anti-Cancer Agents in Medicinal Chemistry, 2021, 21, 2327-2336.	1.7	34
98	Suberosin Attenuates the Proliferation of MCF-7 Breast Cancer Cells in Combination with Radiotherapy or Hyperthermia. Current Drug Research Reviews, 2021, 13, 148-153.	1.4	16
99	The ER Stress/UPR Axis in Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis. Life, 2021, 11, 1.	2.4	34
100	Quercetin in Attenuation of Ischemic/Reperfusion Injury: A Review. Current Molecular Pharmacology, 2021, 14, 537-558.	1.5	14
101	Cervical cancer progression is regulated by SOX transcription factors: Revealing signaling networks and therapeutic strategies. Biomedicine and Pharmacotherapy, 2021, 144, 112335.	5. 6	19
102	Targeting Cancer Stem Cells by Dietary Agents: An Important Therapeutic Strategy against Human Malignancies. International Journal of Molecular Sciences, 2021, 22, 11669.	4.1	24
103	Pre-Clinical and Clinical Applications of Small Interfering RNAs (siRNA) and Co-Delivery Systems for Pancreatic Cancer Therapy. Cells, 2021, 10, 3348.	4.1	30
104	Wnt \hat{l}^2 -Catenin Signaling as a Driver of Hepatocellular Carcinoma Progression: An Emphasis on Molecular Pathways. Journal of Hepatocellular Carcinoma, 2021, Volume 8, 1415-1444.	3.7	65
105	The Effects of Ginsenosides on the Nrf2 Signaling Pathway. Advances in Experimental Medicine and Biology, 2021, 1328, 307-322.	1.6	3
106	Naturally Occurring SGLT2 Inhibitors: A Review. Advances in Experimental Medicine and Biology, 2021, 1328, 523-530.	1.6	1
107	Antitumor and Protective Effects of Melatonin: The Potential Roles of MicroRNAs. Advances in Experimental Medicine and Biology, 2021, 1328, 463-471.	1.6	4
108	Diosgenin: Mechanistic Insights on its Anti-inflammatory Effects. Anti-Inflammatory and Anti-Allergy Agents in Medicinal Chemistry, 2021, 21, 2-9.	1.1	4

#	Article	IF	Citations
109	Monoterpenes modulating autophagy: A review study. Basic and Clinical Pharmacology and Toxicology, 2020, 126, 9-20.	2.5	44
110	Therapeutic and biological activities of berberine: The involvement of Nrf2 signaling pathway. Journal of Cellular Biochemistry, 2020, 121, 1575-1585.	2.6	53
111	Modulatory effects of statins on the autophagy: A therapeutic perspective. Journal of Cellular Physiology, 2020, 235, 3157-3168.	4.1	35
112	MicroRNAs mediate the anti-tumor and protective effects of ginsenosides. Nutrition and Cancer, 2020, 72, 1264-1275.	2.0	14
113	Melatonin as a potential modulator of Nrf2. Fundamental and Clinical Pharmacology, 2020, 34, 11-19.	1.9	88
114	Resveratrol targeting the Wnt signaling pathway: A focus on therapeutic activities. Journal of Cellular Physiology, 2020, 235, 4135-4145.	4.1	39
115	Effects of Chrysin on Serum Corticosterone Levels and Brain Oxidative Damages Induced by Immobilization in Rat. Cardiovascular & Hematological Disorders Drug Targets, 2020, 20, 47-53.	0.7	4
116	Chitosan-based advanced materials for docetaxel and paclitaxel delivery: Recent advances and future directions in cancer theranostics. International Journal of Biological Macromolecules, 2020, 145, 282-300.	7.5	85
117	Neuromodulatory effects of anti-diabetes medications: A mechanistic review. Pharmacological Research, 2020, 152, 104611.	7.1	39
118	Topoisomerase inhibitors: Pharmacology and emerging nanoscale delivery systems. Pharmacological Research, 2020, 151, 104551.	7.1	47
119	Therapeutic effects of kaempferol affecting autophagy and endoplasmic reticulum stress. Phytotherapy Research, 2020, 34, 911-923.	5.8	73
120	Back to Nucleus: Combating with Cadmium Toxicity Using Nrf2 Signaling Pathway as a Promising Therapeutic Target. Biological Trace Element Research, 2020, 197, 52-62.	3.5	22
121	Age-dependent effect of chlorpyrifos on the hematological parameters in male rats. Toxin Reviews, 2020, , 1-5.	3.4	3
122	Broad-Spectrum Preclinical Antitumor Activity of Chrysin: Current Trends and Future Perspectives. Biomolecules, 2020, 10, 1374.	4.0	40
123	Toward Regulatory Effects of Curcumin on Transforming Growth Factor-Beta Across Different Diseases: A Review. Frontiers in Pharmacology, 2020, 11, 585413.	3.5	35
124	Cancer and SOX proteins: New insight into their role in ovarian cancer progression/inhibition. Pharmacological Research, 2020, 161, 105159.	7.1	21
125	Progress in Natural Compounds/siRNA Co-delivery Employing Nanovehicles for Cancer Therapy. ACS Combinatorial Science, 2020, 22, 669-700.	3.8	65
126	Sensing the scent of death: Modulation of microRNAs by Curcumin in gastrointestinal cancers. Pharmacological Research, 2020, 160, 105199.	7.1	61

#	Article	IF	Citations
127	MicroRNAs and Their Influence on the ZEB Family: Mechanistic Aspects and Therapeutic Applications in Cancer Therapy. Biomolecules, 2020, 10, 1040.	4.0	51
128	The interactions and communications in tumor resistance to radiotherapy: Therapy perspectives. International Immunopharmacology, 2020, 87, 106807.	3.8	46
129	An Overview of the Role of Adipokines in Cardiometabolic Diseases. Molecules, 2020, 25, 5218.	3.8	7 3
130	Polychemotherapy with Curcumin and Doxorubicin via Biological Nanoplatforms: Enhancing Antitumor Activity. Pharmaceutics, 2020, 12, 1084.	4.5	64
131	PTEN, a Barrier for Proliferation and Metastasis of Gastric Cancer Cells: From Molecular Pathways to Targeting and Regulation. Biomedicines, 2020, 8, 264.	3.2	40
132	Apigenin as Tumor Suppressor in Cancers: Biotherapeutic Activity, Nanodelivery, and Mechanisms With Emphasis on Pancreatic Cancer. Frontiers in Chemistry, 2020, 8, 829.	3.6	64
133	Resveratrol Modulates Transforming Growth Factor-Beta (TGF- \hat{l}^2) Signaling Pathway for Disease Therapy: A New Insight into Its Pharmacological Activities. Biomedicines, 2020, 8, 261.	3.2	33
134	Role of microRNA/Epithelial-to-Mesenchymal Transition Axis in the Metastasis of Bladder Cancer. Biomolecules, 2020, 10, 1159.	4.0	89
135	Progress in Delivery of siRNA-Based Therapeutics Employing Nano-Vehicles for Treatment of Prostate Cancer. Bioengineering, 2020, 7, 91.	3.5	65
136	Functionalization of Magnetic Nanoparticles by Folate as Potential MRI Contrast Agent for Breast Cancer Diagnostics. Molecules, 2020, 25, 4053.	3.8	26
137	A review on advances in graphene-derivative/polysaccharide bionanocomposites: Therapeutics, pharmacogenomics and toxicity. Carbohydrate Polymers, 2020, 250, 116952.	10.2	50
138	Carotenoids in Cancer Apoptosisâ€"The Road from Bench to Bedside and Back. Cancers, 2020, 12, 2425.	3.7	65
139	Carotenoids in Cancer Metastasis—Status Quo and Outlook. Biomolecules, 2020, 10, 1653.	4.0	32
140	Autophagy regulation using luteolin: new insight into its anti-tumor activity. Cancer Cell International, 2020, 20, 537.	4.1	37
141	Nobiletin in Cancer Therapy: How This Plant Derived-Natural Compound Targets Various Oncogene and Onco-Suppressor Pathways. Biomedicines, 2020, 8, 110.	3.2	48
142	The particle size of drug nanocarriers dictates the fate of neurons; critical points in neurological therapeutics. Nanotechnology, 2020, 31, 335101.	2.6	8
143	Resveratrol targeting tau proteins, amyloidâ€beta aggregations, and their adverse effects: An updated review. Phytotherapy Research, 2020, 34, 2867-2888.	5.8	16
144	PTEN: What we know of the function and regulation of this onco-suppressor factor in bladder cancer?. European Journal of Pharmacology, 2020, 881, 173226.	3.5	44

#	Article	IF	CITATIONS
145	Paper-Based Cell Culture: Paving the Pathway for Liver Tissue Model Development on a Cellulose Paper Chip. ACS Applied Bio Materials, 2020, 3, 3956-3974.	4.6	15
146	Graphene as a promising multifunctional nanoplatform for glioblastoma theranostic applications. FlatChem, 2020, 22, 100173.	5.6	15
147	PD-1/PD-L1 axis regulation in cancer therapy: The role of long non-coding RNAs and microRNAs. Life Sciences, 2020, 256, 117899.	4.3	45
148	Association of the Epithelial–Mesenchymal Transition (EMT) with Cisplatin Resistance. International Journal of Molecular Sciences, 2020, 21, 4002.	4.1	160
149	Abscopal effect in radioimmunotherapy. International Immunopharmacology, 2020, 85, 106663.	3.8	77
150	STAT3 Pathway in Gastric Cancer: Signaling, Therapeutic Targeting and Future Prospects. Biology, 2020, 9, 126.	2.8	61
151	Versatile role of curcumin and its derivatives in lung cancer therapy. Journal of Cellular Physiology, 2020, 235, 9241-9268.	4.1	85
152	MicroRNAs in cancer therapy: Their involvement in oxaliplatin sensitivity/resistance of cancer cells with a focus on colorectal cancer. Life Sciences, 2020, 256, 117973.	4.3	23
153	Targeting of cellular redox metabolism for mitigation of radiation injury. Life Sciences, 2020, 250, 117570.	4.3	44
154	Potential therapeutic effects of curcumin mediated by JAK/STAT signaling pathway: A review. Phytotherapy Research, 2020, 34, 1745-1760.	5.8	58
155	Wnt-regulating microRNAs role in gastric cancer malignancy. Life Sciences, 2020, 250, 117547.	4.3	20
156	Nanotechnological Strategies for Osteoarthritis Diagnosis, Monitoring, Clinical Management, and Regenerative Medicine: Recent Advances and Future Opportunities. Current Rheumatology Reports, 2020, 22, 12.	4.7	42
157	Biofabricated Nanostructures and Their Composites in Regenerative Medicine. ACS Applied Nano Materials, 2020, 3, 6210-6238.	5.0	43
158	Damage-associated molecular patterns in tumor radiotherapy. International Immunopharmacology, 2020, 86, 106761.	3.8	71
159	Flaming the fight against cancer cells: the role of microRNA-93. Cancer Cell International, 2020, 20, 277.	4.1	9
160	Curcumin in cancer therapy: A novel adjunct for combination chemotherapy with paclitaxel and alleviation of its adverse effects. Life Sciences, 2020, 256, 117984.	4.3	92
161	Functionalization of Polymers and Nanomaterials for Biomedical Applications: Antimicrobial Platforms and Drug Carriers. Prosthesis, 2020, 2, 117-139.	2.9	46
162	In vivo gene delivery mediated by non-viral vectors for cancer therapy. Journal of Controlled Release, 2020, 325, 249-275.	9.9	156

#	Article	IF	CITATIONS
163	Mitigation of radiationâ€induced hematopoietic system injury by melatonin. Environmental Toxicology, 2020, 35, 815-821.	4.0	17
164	Curcumin Delivery Mediated by Bio-Based Nanoparticles: A Review. Molecules, 2020, 25, 689.	3.8	164
165	Carbon dots as versatile nanoarchitectures for the treatment of neurological disorders and their theranostic applications: A review. Advances in Colloid and Interface Science, 2020, 278, 102123.	14.7	119
166	Where ferroptosis inhibitors and paraquat detoxification mechanisms intersect, exploring possible treatment strategies. Toxicology, 2020, 433-434, 152407.	4.2	20
167	MicroRNAs as novel targets of sulforaphane in cancer therapy: The beginning of a new tale?. Phytotherapy Research, 2020, 34, 721-728.	5.8	26
168	Curcumin Activates the Nrf2 Pathway and Induces Cellular Protection Against Oxidative Injury. Current Molecular Medicine, 2020, 20, 116-133.	1.3	85
169	Nano-soldiers Ameliorate Silibinin Delivery: A Review Study. Current Drug Delivery, 2020, 17, 15-22.	1.6	17
170	MicroRNA-mediated regulation of Nrf2 signaling pathway: Implications in disease therapy and protection against oxidative stress. Life Sciences, 2020, 244, 117329.	4.3	41
171	Multifunctional Polymeric Nanoplatforms for Brain Diseases Diagnosis, Therapy and Theranostics. Biomedicines, 2020, 8, 13.	3.2	81
172	Recent Advances in Natural Gum-Based Biomaterials for Tissue Engineering and Regenerative Medicine: A Review. Polymers, 2020, 12, 176.	4.5	122
173	The therapeutic effect of resveratrol: Focusing on the Nrf2 signaling pathway. Biomedicine and Pharmacotherapy, 2020, 127, 110234.	5.6	120
174	Natural products and phytochemical nanoformulations targeting mitochondria in oncotherapy: an updated review on resveratrol. Bioscience Reports, 2020, 40, .	2.4	33
175	Tangeretin: a mechanistic review of its pharmacological and therapeutic effects. Journal of Basic and Clinical Physiology and Pharmacology, 2020, 31, .	1.3	41
176	Curcumin Therapeutic Modulation of the Wnt Signaling Pathway. Current Pharmaceutical Biotechnology, 2020, 21, 1006-1015.	1.6	28
177	Berberine Administration in Treatment of Colitis: A Review. Current Drug Targets, 2020, 21, 1385-1393.	2.1	6
178	Anti-tumor Activity of Propofol: A Focus on MicroRNAs. Current Cancer Drug Targets, 2020, 20, 104-114.	1.6	10
179	Therapeutic Effects of Curcumin against Bladder Cancer: A Review of Possible Molecular Pathways. Anti-Cancer Agents in Medicinal Chemistry, 2020, 20, 667-677.	1.7	12
180	Anti-Tumor Effects of Osthole on Different Malignant Tissues: A Review of Molecular Mechanisms. Anti-Cancer Agents in Medicinal Chemistry, 2020, 20, 918-931.	1.7	14

#	ARTICLE	lF	CITATIONS
181	A Pivotal Role of the Nrf2 Signaling Pathway in Spinal Cord Injury: A Prospective Therapeutics Study. CNS and Neurological Disorders - Drug Targets, 2020, 19, 207-219.	1.4	9
182	Preparation of carbon dot as a potential CRISPR/Cas9 plasmid delivery system for lung cancer cells. Minerva Biotecnologica, 2020, 32, .	1.2	8
183	Green tea catechins inhibit microglial activation which prevents the development of neurological disorders. Neural Regeneration Research, 2020, 15, 1792.	3.0	36
184	Effects of newly introduced antidiabetic drugs on autophagy. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 2019, 13, 2445-2449.	3.6	33
185	Nanoparticles Targeting STATs in Cancer Therapy. Cells, 2019, 8, 1158.	4.1	57
186	Autophagy Modulators: Mechanistic Aspects and Drug Delivery Systems. Biomolecules, 2019, 9, 530.	4.0	55
187	Autophagy, anoikis, ferroptosis, necroptosis, and endoplasmic reticulum stress: Potential applications in melanoma therapy. Journal of Cellular Physiology, 2019, 234, 19471-19479.	4.1	86
188	Drug delivery systems for resveratrol, a non-flavonoid polyphenol: Emerging evidence in last decades. Journal of Drug Delivery Science and Technology, 2019, 51, 591-604.	3.0	90
189	Berberine as a potential autophagy modulator. Journal of Cellular Physiology, 2019, 234, 14914-14926.	4.1	85
190	Shedding light on gene therapy: Carbon dots for the minimally invasive image-guided delivery of plasmids and noncoding RNAs - A review. Journal of Advanced Research, 2019, 18, 81-93.	9.5	102
191	Down Regulation of Osteocalcin Gene in Chickens Treated with Cadmium. Iranian Journal of Toxicology, 2019, 13, 1-4.	0.3	5
192	Expression of Collagen Type II and Osteocalcin Genes in Mesenchymal Stem Cells from Rats Treated with Lead acetate II. Iranian Journal of Toxicology, 2018, 12, 35-40.	0.3	8