
Xionglei He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7684230/publications.pdf Version: 2024-02-01

XIONCLEI HE

#	Article	IF	CITATIONS
1	Mutation signatures inform the natural host of SARS-CoV-2. National Science Review, 2022, 9, nwab220.	9.5	15
2	The Runaway Evolution of SARS-CoV-2 Leading to the Highly Evolved Delta Strain. Molecular Biology and Evolution, 2022, 39, .	8.9	14
3	The twin-beginnings of COVID-19 in Asia and Europe—one prevails quickly. National Science Review, 2022, 9, nwab223.	9.5	22
4	Rapid Intraspecies Evolution of Fitness Effects of Yeast Genes. Genome Biology and Evolution, 2022, 14, .	2.5	2
5	On the founder effect in COVID-19 outbreaks: how many infected travelers may have started them all?. National Science Review, 2021, 8, nwaa246.	9.5	27
6	A theoretical exploration of the origin and early evolution of a pandemic. Science Bulletin, 2021, 66, 1022-1029.	9.0	18
7	An instantaneous coalescent method insensitive to population structure. Journal of Genetics and Genomics, 2021, 48, 219-224.	3.9	5
8	Peroxiredoxin alleviates the fitness costs of imidacloprid resistance in an insect pest of rice. PLoS Biology, 2021, 19, e3001190.	5.6	15
9	Mapping single-cell-resolution cell phylogeny reveals cell population dynamics during organ development. Nature Methods, 2021, 18, 1506-1514.	19.0	20
10	A hMTR4â€PDIA3P1â€miRâ€125/124â€TRAF6 Regulatory Axis and Its Function in NF kappa B Signaling and Chemoresistance. Hepatology, 2020, 71, 1660-1677.	7.3	103
11	Decoupling gene functions from knockout effects by evolutionary analyses. National Science Review, 2020, 7, 1169-1180.	9.5	2
12	Human A-to-I RNA editing SNP loci are enriched in GWAS signals for autoimmune diseases and under balancing selection. Genome Biology, 2020, 21, 288.	8.8	10
13	The evolution of sex chromosome dosage compensation in animals. Journal of Genetics and Genomics, 2020, 47, 681-693.	3.9	7
14	The Origin of Additive Genetic Variance Driven by Positive Selection. Molecular Biology and Evolution, 2020, 37, 2300-2308.	8.9	3
15	Defining endogenous barcoding sites for CRISPR/Cas9-based cell lineage tracing in zebrafish. Journal of Genetics and Genomics, 2020, 47, 85-91.	3.9	8
16	Drivers of Mating Type Composition in <i>Tetrahymena thermophila</i> . Genome Biology and Evolution, 2020, 12, 2328-2343.	2.5	8
17	The expression tractability of biological traits shaped by natural selection. Journal of Genetics and Genomics, 2019, 46, 397-404.	3.9	0
18	Assessing the Influence of Dietary History on Gut Microbiota. Current Microbiology, 2019, 76, 237-247.	2.2	10

XIONGLEI HE

#	Article	IF	CITATIONS
19	The Genotype–Phenotype Relationships in the Light of Natural Selection. Molecular Biology and Evolution, 2018, 35, 525-542.	8.9	16
20	On the low reproducibility of cancer studies. National Science Review, 2018, 5, 619-624.	9.5	38
21	Biosynthetic energy cost for amino acids decreases in cancer evolution. Nature Communications, 2018, 9, 4124.	12.8	27
22	Reduced intrinsic DNA curvature leads to increased mutation rate. Genome Biology, 2018, 19, 132.	8.8	23
23	Toward a prospective molecular evolution. Science, 2016, 352, 769-770.	12.6	11
24	The nonessentiality of essential genes in yeast provides therapeutic insights into a human disease. Genome Research, 2016, 26, 1355-1362.	5.5	38
25	Lineage analysis by microsatellite loci deep sequencing in mice. Molecular Reproduction and Development, 2016, 83, 387-391.	2.0	4
26	The Biology Complicated by Genetic Analysis. Molecular Biology and Evolution, 2016, 33, 2177-2181.	8.9	7
27	The Convergent Cancer Evolution toward a Single Cellular Destination. Molecular Biology and Evolution, 2016, 33, 4-12.	8.9	61
28	Mutation Bias, rather than Binding Preference, Underlies the Nucleosome-Associated G+C% Variation in Eukaryotes. Genome Biology and Evolution, 2015, 7, 1033-1038.	2.5	2
29	Reassessing the "Duon―Hypothesis of Protein Evolution. Molecular Biology and Evolution, 2015, 32, 1056-1062.	8.9	22
30	The reverse evolution from multicellularity to unicellularity during carcinogenesis. Nature Communications, 2015, 6, 6367.	12.8	110
31	The <i>d</i> _J / <i>d</i> _S Ratio Test Reveals Hundreds of Novel Putative Cancer Drivers. Molecular Biology and Evolution, 2015, 32, 2181-2185.	8.9	7
32	A Simple Strategy for Reducing False Negatives in Calling Variants from Single-Cell Sequencing Data. PLoS ONE, 2015, 10, e0123789.	2.5	1
33	Nucleosomes Suppress Spontaneous Mutations Base-Specifically in Eukaryotes. Science, 2012, 335, 1235-1238.	12.6	90
34	Genetic Incompatibility Dampens Hybrid Fertility More Than Hybrid Viability: Yeast as a Case Study. PLoS ONE, 2011, 6, e18341.	2.5	13
35	Measuring the evolutionary rate of protein–protein interaction. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8725-8730.	7.1	50
36	He et al. reply. Nature Genetics, 2011, 43, 1171-1172.	21.4	45

XIONGLEI HE

#	Article	IF	CITATIONS
37	Prevalent positive epistasis in Escherichia coli and Saccharomyces cerevisiae metabolic networks. Nature Genetics, 2010, 42, 272-276.	21.4	134
38	On the Growth of Scientific Knowledge: Yeast Biology as a Case Study. PLoS Computational Biology, 2009, 5, e1000320.	3.2	8
39	Why Do Hubs Tend to Be Essential in Protein Networks?. PLoS Genetics, 2006, 2, e88.	3.5	634
40	Higher Duplicability of Less Important Genes in Yeast Genomes. Molecular Biology and Evolution, 2006, 23, 144-151.	8.9	83
41	Transcriptional Reprogramming and Backup Between Duplicate Genes: Is It a Genomewide Phenomenon?. Genetics, 2006, 172, 1363-1367.	2.9	20
42	Toward a Molecular Understanding of Pleiotropy. Genetics, 2006, 173, 1885-1891.	2.9	182
43	Gene Complexity and Gene Duplicability. Current Biology, 2005, 15, 1016-1021.	3.9	90
44	Rapid Subfunctionalization Accompanied by Prolonged and Substantial Neofunctionalization in Duplicate Gene Evolution. Genetics, 2005, 169, 1157-1164.	2.9	598
45	Significant Impact of Protein Dispensability on the Instantaneous Rate of Protein Evolution. Molecular Biology and Evolution, 2005, 22, 1147-1155.	8.9	114