Qipeng Lu ## List of Publications by Year in descending order Source: https://exaly.com/author-pdf/7683327/publications.pdf Version: 2024-02-01 91884 94433 9,250 69 37 69 h-index citations g-index papers 72 72 72 13649 docs citations times ranked citing authors all docs | # | Article | IF | Citations | |----|--|------|-----------| | 1 | 2D Transitionâ€Metalâ€Dichalcogenideâ€Nanosheetâ€Based Composites for Photocatalytic and Electrocatalytic Hydrogen Evolution Reactions. Advanced Materials, 2016, 28, 1917-1933. | 21.0 | 1,214 | | 2 | Ultrathin 2D Metal–Organic Framework Nanosheets. Advanced Materials, 2015, 27, 7372-7378. | 21.0 | 943 | | 3 | Synthesis of Two-Dimensional CoS _{1.097} /Nitrogen-Doped Carbon Nanocomposites Using Metal–Organic Framework Nanosheets as Precursors for Supercapacitor Application. Journal of the American Chemical Society, 2016, 138, 6924-6927. | 13.7 | 591 | | 4 | Bioinspired Design of Ultrathin 2D Bimetallic Metal–Organicâ€Framework Nanosheets Used as Biomimetic Enzymes. Advanced Materials, 2016, 28, 4149-4155. | 21.0 | 440 | | 5 | Threeâ€Dimensional Architectures Constructed from Transitionâ€Metal Dichalcogenide Nanomaterials for Electrochemical Energy Storage and Conversion. Angewandte Chemie - International Edition, 2018, 57, 626-646. | 13.8 | 398 | | 6 | Growth of Au Nanoparticles on 2D Metalloporphyrinic Metalâ€Organic Framework Nanosheets Used as Biomimetic Catalysts for Cascade Reactions. Advanced Materials, 2017, 29, 1700102. | 21.0 | 384 | | 7 | Twoâ€Dimensional Metal–Organic Framework Nanosheets. Small Methods, 2017, 1, 1600030. | 8.6 | 364 | | 8 | Selfâ€Assembly of Singleâ€Layer CoAlâ€Layered Double Hydroxide Nanosheets on 3D Graphene Network Used as Highly Efficient Electrocatalyst for Oxygen Evolution Reaction. Advanced Materials, 2016, 28, 7640-7645. | 21.0 | 355 | | 9 | Oneâ€Pot Synthesis of Highly Anisotropic Fiveâ€Foldâ€Twinned PtCu Nanoframes Used as a Bifunctional Electrocatalyst for Oxygen Reduction and Methanol Oxidation. Advanced Materials, 2016, 28, 8712-8717. | 21.0 | 336 | | 10 | Layered Transition Metal Dichalcogenideâ€Based Nanomaterials for Electrochemical Energy Storage.
Advanced Materials, 2020, 32, e1903826. | 21.0 | 329 | | 11 | Amorphous/Crystalline Heteroâ€Phase Pd Nanosheets: Oneâ€Pot Synthesis and Highly Selective
Hydrogenation Reaction. Advanced Materials, 2018, 30, e1803234. | 21.0 | 231 | | 12 | Crystal phase-based epitaxial growth of hybrid noble metal nanostructures on 4H/fcc Au nanowires. Nature Chemistry, 2018, 10, 456-461. | 13.6 | 220 | | 13 | High-Yield Exfoliation of Ultrathin Two-Dimensional Ternary Chalcogenide Nanosheets for Highly Sensitive and Selective Fluorescence DNA Sensors. Journal of the American Chemical Society, 2015, 137, 10430-10436. | 13.7 | 214 | | 14 | Ultrathin Twoâ€Dimensional Organic–Inorganic Hybrid Perovskite Nanosheets with Bright, Tunable Photoluminescence and High Stability. Angewandte Chemie - International Edition, 2017, 56, 4252-4255. | 13.8 | 206 | | 15 | Ag@MoS ₂ Core–Shell Heterostructure as SERS Platform to Reveal the Hydrogen Evolution Active Sites of Single-Layer MoS ₂ . Journal of the American Chemical Society, 2020, 142, 7161-7167. | 13.7 | 185 | | 16 | Self-Healing and Highly Stretchable Gelatin Hydrogel for Self-Powered Strain Sensor. ACS Applied Materials & Company: Interfaces, 2020, 12, 1558-1566. | 8.0 | 174 | | 17 | Photocatalytic Synthesis and Photovoltaic Application of Ag-TiO ₂ Nanorod Composites.
Nano Letters, 2013, 13, 5698-5702. | 9.1 | 173 | | 18 | Two-dimensional transition metal dichalcogenide nanomaterials for biosensing applications.
Materials Chemistry Frontiers, 2017, 1, 24-36. | 5.9 | 173 | | # | Article | IF | CITATIONS | |----|--|------|-----------| | 19 | Syntheses and Properties of Metal Nanomaterials with Novel Crystal Phases. Advanced Materials, 2018, 30, e1707189. | 21.0 | 148 | | 20 | Boosting Photocatalytic Hydrogen Production via Interfacial Engineering on 2D Ultrathin Zâ€Scheme ZnIn ₂ S ₄ /gâ€C ₃ N ₄ Heterojunction. Advanced Functional Materials, 2022, 32, . | 14.9 | 147 | | 21 | Ligand-free rutile and anatase TiO (sub) 2 (/sub) nanocrystals as electron extraction layers for high performance inverted polymer solar cells. RSC Advances, 2017, 7, 20084-20092. | 3.6 | 135 | | 22 | Graphene-based materials: Fabrication and application for adsorption in analytical chemistry. Journal of Chromatography A, 2014, 1362, 1-15. | 3.7 | 133 | | 23 | Synthesis of PdM (M = Zn, Cd, ZnCd) Nanosheets with an Unconventional Face-Centered Tetragonal Phase as Highly Efficient Electrocatalysts for Ethanol Oxidation. ACS Nano, 2019, 13, 14329-14336. | 14.6 | 133 | | 24 | Edge Epitaxy of Two-Dimensional MoSe ₂ and MoS ₂ Nanosheets on One-Dimensional Nanowires. Journal of the American Chemical Society, 2017, 139, 8653-8660. | 13.7 | 118 | | 25 | Preparation of Superhydrophilic and Underwater Superoleophobic Nanofiberâ€Based Meshes from Waste Glass for Multifunctional Oil/Water Separation. Small, 2017, 13, 1700391. | 10.0 | 111 | | 26 | In Situ Synthesis of Metal Sulfide Nanoparticles Based on 2D Metalâ€Organic Framework Nanosheets. Small, 2016, 12, 4669-4674. | 10.0 | 101 | | 27 | Magnetic Tuning of Plasmonic Excitation of Gold Nanorods. Journal of the American Chemical Society, 2013, 135, 15302-15305. | 13.7 | 98 | | 28 | Synthesis of Palladiumâ€Based Crystalline@Amorphous Core–Shell Nanoplates for Highly Efficient Ethanol Oxidation. Advanced Materials, 2020, 32, e2000482. | 21.0 | 98 | | 29 | Synthesis of Hierarchical 4H/fcc Ru Nanotubes for Highly Efficient Hydrogen Evolution in Alkaline
Media. Small, 2018, 14, e1801090. | 10.0 | 80 | | 30 | Metallic ruthenium-based nanomaterials for electrocatalytic and photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 24691-24714. | 10.3 | 80 | | 31 | Chlorine-Doped Graphene Quantum Dots with Enhanced Anti- and Pro-Oxidant Properties. ACS Applied Materials & Document (1988) (19 | 8.0 | 77 | | 32 | Aging amorphous/crystalline heterophase PdCu nanosheets for catalytic reactions. National Science Review, 2019, 6, 955-961. | 9.5 | 75 | | 33 | Anodized Aluminum Oxide Templated Synthesis of Metal–Organic Frameworks Used as Membrane
Reactors. Angewandte Chemie - International Edition, 2017, 56, 578-581. | 13.8 | 57 | | 34 | Selective Epitaxial Growth of Rh Nanorods on 2H/ <i>fcc</i> Heterophase Au Nanosheets to Form 1D/2D Rhâ€"Au Heterostructures for Highly Efficient Hydrogen Evolution. Journal of the American Chemical Society, 2021, 143, 4387-4396. | 13.7 | 56 | | 35 | Pd-based intermetallic nanocrystals: From precise synthesis to electrocatalytic applications in fuel cells. Coordination Chemistry Reviews, 2021, 445, 214085. | 18.8 | 53 | | 36 | Synthesis of MoX2 (X = Se or S) monolayers with high-concentration 1T′ phase on 4H/fcc-Au nanorods for hydrogen evolution. Nano Research, 2019, 12, 1301-1305. | 10.4 | 44 | | # | Article | IF | CITATIONS | |----|--|------|-----------| | 37 | Dreidimensionale Architekturen aus Übergangsmetallâ€Dichalkogenidâ€Nanomaterialien zur elektrochemischen Energiespeicherung und â€umwandlung. Angewandte Chemie, 2018, 130, 634-655. | 2.0 | 37 | | 38 | Synthesis of ultrathin two-dimensional organic–inorganic hybrid perovskite nanosheets for polymer field-effect transistors. Journal of Materials Chemistry C, 2018, 6, 3945-3950. | 5.5 | 36 | | 39 | Upconversion multicolor tuning: Red to green emission from Y2O3:Er, Yb nanoparticles by calcination. Applied Physics Letters, 2013, 102, . | 3.3 | 33 | | 40 | Self-Assembled TiO ₂ Nanorods as Electron Extraction Layer for High-Performance Inverted Polymer Solar Cells. Chemistry of Materials, 2015, 27, 44-52. | 6.7 | 33 | | 41 | Au nanoparticles deposited on ultrathin two-dimensional covalent organic framework nanosheets for <i>in vitro</i> | 5.6 | 33 | | 42 | The formation mechanism of TiO2 polymorphs under hydrothermal conditions based on the structural evolution of [Ti(OH)h(H2O)6â^'h]4â^'h monomers. Journal of Materials Chemistry C, 2019, 7, 5764-5771. | 5.5 | 32 | | 43 | Photocatalytic Surface-Initiated Polymerization on TiO ₂ toward Well-Defined Composite Nanostructures. ACS Applied Materials & Samp; Interfaces, 2016, 8, 538-546. | 8.0 | 31 | | 44 | Magnetochromatic Thinâ€Film Microplates. Advanced Materials, 2015, 27, 86-92. | 21.0 | 27 | | 45 | Unusual 4H-phase twinned noble metal nanokites. Nature Communications, 2019, 10, 2881. | 12.8 | 25 | | 46 | Enhanced amplified spontaneous emission from morphology-controlled organic–inorganic halide perovskite films. RSC Advances, 2015, 5, 103674-103679. | 3.6 | 23 | | 47 | Graded interface engineering of 3D/2D halide perovskite solar cells through ultrathin (PEA)2PbI4 nanosheets. Chinese Chemical Letters, 2021, 32, 2259-2262. | 9.0 | 23 | | 48 | Crystal facet-dependent electrocatalytic performance of metallic Cu in CO2 reduction reactions. Chinese Chemical Letters, 2022, 33, 3641-3649. | 9.0 | 23 | | 49 | Mo-ion doping evoked visible light response in TiO2 nanocrystals for highly-efficient removal of benzene. Chemical Engineering Journal, 2020, 397, 125444. | 12.7 | 22 | | 50 | Negative differential resistance and carrier transport of electrically bistable devices based on poly(N-vinylcarbazole)-silver sulfide composites. Nanoscale Research Letters, 2014, 9, 128. | 5.7 | 21 | | 51 | Bromide Ions Triggered Synthesis of Noble Metal–Based Intermetallic Nanocrystals. Small, 2020, 16, 2003782. | 10.0 | 21 | | 52 | Anodized Aluminum Oxide Templated Synthesis of Metal–Organic Frameworks Used as Membrane Reactors. Angewandte Chemie, 2017, 129, 593-596. | 2.0 | 18 | | 53 | Quasiâ€Epitaxial Growth of Magnetic Nanostructures on 4Hâ€Au Nanoribbons. Advanced Materials, 2021, 33, e2007140. | 21.0 | 18 | | 54 | Controlled synthesis and defect dependent upconversion luminescence of Y2O3: Yb, Er nanoparticles. Journal of Applied Physics, 2014, 115, . | 2.5 | 16 | | # | Article | IF | CITATIONS | |----|--|---------------------------------------|-------------------| | 55 | Filling Mesopores of Conductive Metal–Organic Frameworks with Cu Clusters for Selective Nitrate Reduction to Ammonia. ACS Applied Materials & Samp; Interfaces, 2022, 14, 32176-32182. | 8.0 | 16 | | 56 | Towards efficient photocatalytic degradation of organic pollutants in hierarchical TiO ₂ /SnO p–n heterojunction under visible-light irradiation. Nanotechnology, 2019, 30, 434001. | 2.6 | 12 | | 57 | Synthesis of porous Y2O3:Er plates with enhanced upconversion luminescence properties. Materials Letters, 2013, 99, 115-117. | 2.6 | 11 | | 58 | Preparation of CdS <i>_y</i> Se _{1â^'} <i>_y</i> â€MoS ₂ Heterostructures via Cation Exchange of Preâ€Epitaxially Synthesized Cu _{2â^'} <i>_{ï‡}</i> Sci> _y Se _{1â^'} <i>_y</i> for Photocatalytic Hydrogen Evolution. Small, 2021, 17, e2006135. | _{2<td>sub¹¹</td>} | sub ¹¹ | | 59 | Photoluminescence of graphene quantum dots doped with different elements. Chinese Science Bulletin, 2019, 64, 411-418. | 0.7 | 10 | | 60 | Photocatalytic synthesis of gold nanoparticles using TiO ₂ nanorods: a mechanistic investigation. Physical Chemistry Chemical Physics, 2019, 21, 18753-18757. | 2.8 | 9 | | 61 | Effects of acetone-soaking treatment on the performance of polymer solar cells based on P3HT/PCBM bulk heterojunction. Chinese Physics B, 2014, 23, 118802. | 1.4 | 8 | | 62 | Halloysite nanotubeâ€based superhydrophobic foam for highly efficient oil/water separation. Journal of the American Ceramic Society, 2021, 104, 5529-5536. | 3.8 | 8 | | 63 | Synthesis and Characterization of Y ₂ O ₃ :Er ³⁺ Upconversion Materials with Nanoporous Structures. Journal of Nanoscience and Nanotechnology, 2011, 11, 9671-9675. | 0.9 | 6 | | 64 | Intermetallic Nanocrystals: Bromide Ions Triggered Synthesis of Noble Metal–Based Intermetallic Nanocrystals (Small 40/2020). Small, 2020, 16, 2070219. | 10.0 | 3 | | 65 | Tunable thickness and band structure of SnO sheets for improved photocatalytic activity. CrystEngComm, 2020, 22, 2219-2226. | 2.6 | 3 | | 66 | Electrical bistable devices using composites of zinc sulfide nanoparticles and poly-(N-vinylcarbazole). Chinese Physics B, 2015, 24, 037201. | 1.4 | 2 | | 67 | Exonuclease III-Regulated Target Cyclic Amplification-Based Single Nucleotide Polymorphism Detection
Using Ultrathin Ternary Chalcogenide Nanosheets. Frontiers in Chemistry, 2019, 7, 844. | 3.6 | 2 | | 68 | A Single Molecule Electromer Emitting Compound with Enhanced Hole Transporting Property for Organic Light Emitting Devices. Science of Advanced Materials, 2015, 7, 2436-2440. | 0.7 | 0 | | 69 | Cadmium (⁴⁸ Cd). World Scientific Series in Nanoscience and Nanotechnology, 2019, , 485-528. | 0.1 | 0 |