Maria Sandkvist

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/768311/publications.pdf

Version: 2024-02-01

78 papers

4,094 citations

34 h-index 223800 46 g-index

79 all docs

79 docs citations

79 times ranked $\begin{array}{c} 3853 \\ \text{citing authors} \end{array}$

#	Article	IF	CITATIONS
1	The type II secretion system: biogenesis, molecular architecture and mechanism. Nature Reviews Microbiology, 2012, 10, 336-351.	28.6	435
2	Tissue-type plasminogen activator induces opening of the blood-brain barrier via the LDL receptor–related protein. Journal of Clinical Investigation, 2003, 112, 1533-1540.	8.2	417
3	Biology of type II secretion. Molecular Microbiology, 2001, 40, 271-283.	2.5	364
4	Type II Secretion and Pathogenesis. Infection and Immunity, 2001, 69, 3523-3535.	2.2	300
5	Type II secretion: from structure to function. FEMS Microbiology Letters, 2006, 255, 175-186.	1.8	207
6	Neuroserpin, a Brain-associated Inhibitor of Tissue Plasminogen Activator Is Localized Primarily in Neurons. Journal of Biological Chemistry, 1997, 272, 33062-33067.	3.4	192
7	Convergence of the Secretory Pathways for Cholera Toxin and the Filamentous Phage, CTX. Science, 2000, 288, 333-335.	12.6	111
8	Crystal Structure of the Extracellular Protein Secretion NTPase EpsE of Vibrio cholerae. Journal of Molecular Biology, 2003, 333, 657-674.	4.2	109
9	Genes required for extracellular secretion of enterotoxin are clustered in Vibrio cholerae. Gene, 1993, 132, 101-106.	2.2	106
10	Proteomic Analysis of the Vibrio cholerae Type II Secretome Reveals New Proteins, Including Three Related Serine Proteases. Journal of Biological Chemistry, 2011, 286, 16555-16566.	3.4	106
11	The X-ray Structure of the Type II Secretion System Complex Formed by the N-terminal Domain of EpsE and the Cytoplasmic Domain of EpsL of Vibrio cholerae. Journal of Molecular Biology, 2005, 348, 845-855.	4.2	94
12	A protein required for secretion of cholera toxin through the outer membrane of Vibrio cholerae. Gene, 1993, 123, 81-86.	2.2	92
13	Direct Interaction of the EpsL and EpsM Proteins of the General Secretion Apparatus in <i>Vibrio cholerae</i>). Journal of Bacteriology, 1999, 181, 3129-3135.	2.2	88
14	Structural and Functional Studies on the Interaction of GspC and GspD in the Type II Secretion System. PLoS Pathogens, 2011, 7, e1002228.	4.7	83
15	Synergistic stimulation of EpsE ATP hydrolysis by EpsL and acidic phospholipids. EMBO Journal, 2007, 26, 19-27.	7.8	82
16	Long helical filaments are not seen encircling cells in electron cryotomograms of rod-shaped bacteria. Biochemical and Biophysical Research Communications, 2011, 407, 650-655.	2.1	75
17	Molecular Analysis of the Vibrio cholerae Type II Secretion ATPase EpsE. Journal of Bacteriology, 2005, 187, 249-256.	2.2	73
18	Docking and Assembly of the Type II Secretion Complex of <i>Vibrio cholerae</i> Bacteriology, 2009, 191, 3149-3161.	2.2	68

#	Article	IF	Citations
19	Acinetobacter baumannii Is Dependent on the Type II Secretion System and Its Substrate LipA for Lipid Utilization and <i>In Vivo</i> Fitness. Journal of Bacteriology, 2016, 198, 711-719.	2.2	63
20	Regulation of seizure spreading by neuroserpin and tissue-type plasminogen activator is plasminogen-independent. Journal of Clinical Investigation, 2002, 109, 1571-1578.	8.2	61
21	Hexamers of the Type II Secretion ATPase GspE from Vibrio cholerae with Increased ATPase Activity. Structure, 2013, 21, 1707-1717.	3.3	60
22	The Structure of the Cytoplasmic Domain of EpsL, An Inner Membrane Component of the Type II Secretion System of Vibrio cholerae: An Unusual Member of the Actin-like ATPase Superfamily. Journal of Molecular Biology, 2004, 344, 619-633.	4.2	55
23	In vivo cross-linking of EpsG to EpsL suggests a role for EpsL as an ATPase-pseudopilin coupling protein in the Type II secretion system of Vibrio cholerae. Molecular Microbiology, 2011, 79, 786-798.	2.5	52
24	Outer Membrane Vesicle-Mediated Export of Processed PrtV Protease from Vibrio cholerae. PLoS ONE, 2015, 10, e0134098.	2.5	52
25	Architecture, Function, and Substrates of the Type II Secretion System. EcoSal Plus, 2019, 8, .	5.4	51
26	Two Regions of EpsL Involved in Species-Specific Protein-Protein Interactions with EpsE and EpsM of the General Secretion Pathway in Vibrio cholerae. Journal of Bacteriology, 2000, 182, 742-748.	2.2	50
27	Compromised Outer Membrane Integrity in <i>Vibrio cholerae</i> Type II Secretion Mutants. Journal of Bacteriology, 2007, 189, 8484-8495.	2.2	50
28	The three-dimensional structure of the cytoplasmic domains of EpsF from the type 2 secretion system of Vibrio cholerae. Journal of Structural Biology, 2009, 166, 303-315.	2.8	49
29	Secretion of recombinant proteins by Gram-negative bacteria. Current Opinion in Biotechnology, 1996, 7, 505-511.	6.6	46
30	Specificity of the protein secretory apparatus: secretion of the heat-labile enterotoxin B subunit pentamers by different species of Gram- bacteria. Gene, 1995, 152, 41-45.	2.2	45
31	The Type II Secretion System Delivers Matrix Proteins for Biofilm Formation by Vibrio cholerae. Journal of Bacteriology, 2014, 196, 4245-4252.	2.2	45
32	CpaA Is a Glycan-Specific Adamalysin-like Protease Secreted by Acinetobacter baumannii That Inactivates Coagulation Factor XII. MBio, 2018, 9, .	4.1	45
33	Cell Envelope Perturbation Induces Oxidative Stress and Changes in Iron Homeostasis in <i>Vibrio cholerae</i>). Journal of Bacteriology, 2009, 191, 5398-5408.	2.2	43
34	Calcium Is Essential for the Major Pseudopilin in the Type 2 Secretion System. Journal of Biological Chemistry, 2009, 284, 25466-25470.	3.4	41
35	Targeting the Type II Secretion System: Development, Optimization, and Validation of a High-Throughput Screen for the Identification of Small Molecule Inhibitors. Frontiers in Cellular and Infection Microbiology, 2017, 7, 380.	3.9	34
36	Involvement of the GspAB Complex in Assembly of the Type II Secretion System Secretin of Aeromonas and Vibrio Species. Journal of Bacteriology, 2011, 193, 2322-2331.	2.2	32

3

#	Article	IF	CITATIONS
37	Oligomerization of EpsE Coordinates Residues from Multiple Subunits to Facilitate ATPase Activity. Journal of Biological Chemistry, 2011, 286, 10378-10386.	3.4	27
38	Functional and Structural Characterization of Vibrio cholerae Extracellular Serine Protease B, VesB. Journal of Biological Chemistry, 2014, 289, 8288-8298.	3.4	24
39	Mapping Critical Interactive Sites within the Periplasmic Domain of the <i>Vibrio cholerae</i> Type II Secretion Protein EpsM. Journal of Bacteriology, 2007, 189, 9082-9089.	2.2	22
40	Lipoproteins and Their Trafficking to the Outer Membrane. , 0, , 67-76.		22
41	Suppression of temperature-sensitive assembly mutants of heat-labile enterotoxin B subunits. Molecular Microbiology, 1993, 10, 635-645.	2.5	18
42	Zinc coordination is essential for the function and activity of the type II secretion ATPase EpsE. MicrobiologyOpen, 2016, 5, 870-882.	3.0	12
43	C-terminal processing of GlyGly-CTERM containing proteins by rhombosortase in Vibrio cholerae. PLoS Pathogens, 2018, 14, e1007341.	4.7	11
44	MICROBIOLOGY: A Hitchhiker's Guide to Type IV Secretion. Science, 2004, 304, 1122-1123.	12.6	8
45	Outer Membrane Vesicle-Host Cell Interactions. , 0, , 201-214.		7
46	Structure and Activity of the Type VI Secretion System. , 0, , 329-342.		7
47	Type II Secretion in <i>Escherichia coli</i> . EcoSal Plus, 2010, 4, .	5.4	6
48	Fluorescence Microscopy and Proteomics to Investigate Subcellular Localization, Assembly, and Function of the Type II Secretion System. Methods in Molecular Biology, 2013, 966, 157-172.	0.9	6
49	ESX/Type VII Secretion Systems-An Important Way Out for Mycobacterial Proteins., 0,, 351-362.		5
50	<i>Bacteroidetes</i> Gliding Motility and the Type IX Secretion System., 0,, 363-374.		4
51	Outer Membrane Protein Insertion by the \hat{I}^2 -barrel Assembly Machine. , 0, , 91-101.		4
52	Type I Secretion Systems-One Mechanism for All?., 2019,, 215-225.		3
53	Sortases, Surface Proteins, and Their Roles inStaphylococcus aureusDisease and Vaccine Development., 2019, , 173-188.		3
54	Type VI Secretion Systems and the Gut Microbiota. , 0, , 343-350.		3

#	Article	IF	CITATIONS
55	Curli Biogenesis: Bacterial Amyloid Assembly by the Type VIII Secretion Pathway. , 2019, , 163-171.		3
56	The TAM: A Translocation and Assembly Module of the \hat{l}^2 -barrel Assembly Machinery in Bacterial Outer Membranes. , 0, , 103-111.		2
57	Biological and Structural Diversity of Type IV Secretion Systems. , 0, , 277-289.		2
58	Architecture, Function, and Substrates of the Type II Secretion System. , 2019, , 227-244.		2
59	The Remarkable Biomechanical Properties of the Type 1 Chaperone-Usher Pilus: A Structural and Molecular Perspective., 2019,, 137-148.		2
60	The Dynamic Structures of the Type IV Pilus. , 2019, , 113-128.		2
61	The Twin-Arginine Pathway for Protein Secretion. , 2019, , 53-66.		2
62	Suppressor Mutations in Type II Secretion Mutants of Vibrio cholerae: Inactivation of the VesC Protease. MSphere, 2020, 5, .	2.9	2
63	Hostile Takeover: Hijacking of Endoplasmic Reticulum Function by T4SS and T3SS Effectors Creates a Niche for Intracellular Pathogens. , 0, , 291-305.		1
64	A Hybrid Secretion System Facilitates Bacterial Sporulation: A Structural Perspective., 2019,, 389-399.		1
65	The Injectisome, a Complex Nanomachine for Protein Injection into Mammalian Cells., 2019, , 245-259.		1
66	Bordetella Filamentous Hemagglutinin, a Model for the Two-Partner Secretion Pathway. , 2019, , 319-328.		1
67	The Two Distinct Types of SecA2-Dependent Export Systems. , 0, , 29-41.		1
68	Protein Secretion in Spirochetes., 2019,, 77-89.		1
69	Promises and Challenges of the Type Three Secretion System Injectisome as an Antivirulence Target. , 0, , 261-276.		1
70	Toxins and Type II Secretion Systems. , 0, , 81-94.		1
71	The Conserved Role of YidC in Membrane Protein Biogenesis. , 0, , 43-51.		1
72	SecA-Mediated Protein Translocation through the SecYEG Channel. , 0, , 13-28.		0

#	Article	IF	CITATIONS
73	Similarities and Differences between Colicin and Filamentous Phage Uptake by Bacterial Cells. , 2019, , 375-387.		O
74	Gram-Positive Type IV Pili and Competence. , 2019, , 129-135.		0
75	Architecture and Assembly of Periplasmic Flagellum. , 2019, , 189-199.		O
76	Electron Cryotomography of Bacterial Secretion Systems. , 0, , 1-12.		0
77	Therapeutic Approaches Targeting the Assembly and Function of Chaperone-Usher Pili., 0,, 149-161.		O
78	Type V Secretion in Gram-Negative Bacteria. , 0, , 307-318.		0