
Robbie Waugh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7681604/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The proteome of developing barley anthers during meiotic prophase I. Journal of Experimental Botany, 2022, 73, 1464-1482.	4.8	3
2	Grain dispersal mechanism in cereals arose from a genome duplication followed by changes in spatial expression of genes involved in pollen development. Theoretical and Applied Genetics, 2022, 135, 1263-1277.	3.6	1
3	Genome-Wide Association Study for Resistance to Rhynchosporium in a Diverse Collection of Spring Barley Germplasm. Agronomy, 2022, 12, 782.	3.0	2
4	Barley (Hordeum Vulgare) Anther and Meiocyte RNA Sequencing: Mapping Sequencing Reads and Downstream Data Analyses. Methods in Molecular Biology, 2022, 2484, 291-311.	0.9	2
5	The value of genotype-specific reference for transcriptome analyses in barley. Life Science Alliance, 2022, 5, e202101255.	2.8	2
6	The genome and gene editing system of sea barleygrass provideÂa novel platform for cereal domestication and stress tolerance studies. Plant Communications, 2022, 3, 100333.	7.7	8
7	<scp>BaRTv2</scp> : a highly resolved barley reference transcriptome for accurate transcriptâ€specific <scp>RNA</scp> â€seq quantification. Plant Journal, 2022, 111, 1183-1202.	5.7	17
8	Identifying plant genes shaping microbiota composition in the barley rhizosphere. Nature Communications, 2022, 13, .	12.8	44
9	3D RNA-seq: a powerful and flexible tool for rapid and accurate differential expression and alternative splicing analysis of RNA-seq data for biologists. RNA Biology, 2021, 18, 1574-1587.	3.1	58
10	The effect of heat stress on sugar beet recombination. Theoretical and Applied Genetics, 2021, 134, 81-93.	3.6	5
11	EORNA, a barley gene and transcript abundance database. Scientific Data, 2021, 8, 90.	5.3	20
12	Ubiquitination in Plant Meiosis: Recent Advances and High Throughput Methods. Frontiers in Plant Science, 2021, 12, 667314.	3.6	6
13	MADS1 maintains barley spike morphology at high ambient temperatures. Nature Plants, 2021, 7, 1093-1107.	9.3	35
14	Downregulation of Barley Regulator of Telomere Elongation Helicase 1 Alters the Distribution of Meiotic Crossovers. Frontiers in Plant Science, 2021, 12, 745070.	3.6	2
15	A single residue deletion in the barley HKT1;5 P189 variant restores plasma membrane localisation but not Na+ conductance. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183669.	2.6	5
16	Genome-wide association study reveals the genetic complexity of fructan accumulation patterns in barley grain. Journal of Experimental Botany, 2021, 72, 2383-2402.	4.8	17
17	The barley immune receptor Mla recognizes multiple pathogens and contributes to host range dynamics. Nature Communications, 2021, 12, 6915.	12.8	29
18	An Induced Mutation in HvRECQL4 Increases the Overall Recombination and Restores Fertility in a Barley HvMLH3 Mutant Background. Frontiers in Plant Science, 2021, 12, 706560.	3.6	8

#	Article	IF	CITATIONS
19	The barley pan-genome reveals the hidden legacy of mutation breeding. Nature, 2020, 588, 284-289.	27.8	314
20	Dissecting new genetic components of salinity tolerance in two-row spring barley at the vegetative and reproductive stages. PLoS ONE, 2020, 15, e0236037.	2.5	25
21	Association mapping identifies quantitative trait loci (QTL) for digestibility in rice straw. Biotechnology for Biofuels, 2020, 13, 165.	6.2	7
22	Mobilizing Crop Biodiversity. Molecular Plant, 2020, 13, 1341-1344.	8.3	50
23	Targeted mutation of barley (1,3;1,4)â€Î²â€glucan synthases reveals complex relationships between the storage and cell wall polysaccharide content. Plant Journal, 2020, 104, 1009-1022.	5.7	35
24	Association mapping of malting quality traits in UK spring and winter barley cultivar collections. Theoretical and Applied Genetics, 2020, 133, 2567-2582.	3.6	23
25	Development of barley introgression lines carrying the leaf rust resistance genes <i>Rph1</i> to <i>Rph15</i> . Crop Science, 2020, 60, 282-302.	1.8	11
26	Segmental duplications are hot spots of copy number variants affecting barley gene content. Plant Journal, 2020, 103, 1073-1088.	5.7	6
27	A Genome Assembly of the Barley â€~Transformation Reference' Cultivar Golden Promise. G3: Genes, Genomes, Genetics, 2020, 10, 1823-1827.	1.8	61
28	Barley Anther and Meiocyte Transcriptome Dynamics in Meiotic Prophase I. Frontiers in Plant Science, 2020, 11, 619404.	3.6	19
29	Following the Formation of Synaptonemal Complex Formation in Wheat and Barley by High-Resolution Microscopy. Methods in Molecular Biology, 2020, 2061, 207-215.	0.9	5
30	A Modular Tray Growth System for Barley. Methods in Molecular Biology, 2020, 2061, 367-379.	0.9	6
31	Barley sodium content is regulated by natural variants of the Na+ transporter HvHKT1;5. Communications Biology, 2020, 3, 258.	4.4	21
32	Title is missing!. , 2020, 15, e0236037.		0
33	Title is missing!. , 2020, 15, e0236037.		Ο
34	Title is missing!. , 2020, 15, e0236037.		0
35	Title is missing!. , 2020, 15, e0236037.		0
36	<scp>RNA</scp> iâ€suppression of barley caffeic acid <i>O</i> â€methyltransferase modifies lignin despite redundancy in the gene family. Plant Biotechnology Journal, 2019, 17, 594-607.	8.3	37

#	Article	IF	CITATIONS
37	A highly mutagenised barley (cv. Golden Promise) TILLING population coupled with strategies for screening-by-sequencing. Plant Methods, 2019, 15, 99.	4.3	39
38	Harnessing the potential of germplasm collections. Nature Genetics, 2019, 51, 200-201.	21.4	53
39	Exome sequences and multiâ€environment field trials elucidate the genetic basis of adaptation in barley. Plant Journal, 2019, 99, 1172-1191.	5.7	50
40	A Comparison of Mainstream Genotyping Platforms for the Evaluation and Use of Barley Genetic Resources. Frontiers in Plant Science, 2019, 10, 544.	3.6	66
41	APETALA2 control of barley internode elongation. Development (Cambridge), 2019, 146, .	2.5	36
42	Application of a Sensitive and Reproducible Label-Free Proteomic Approach to Explore the Proteome of Individual Meiotic-Phase Barley Anthers. Frontiers in Plant Science, 2019, 10, 393.	3.6	12
43	desynaptic5 carries a spontaneous semi-dominant mutation affecting Disrupted Meiotic cDNA 1 in barley. Journal of Experimental Botany, 2019, 70, 2683-2698.	4.8	24
44	Tracing the ancestry of modern bread wheats. Nature Genetics, 2019, 51, 905-911.	21.4	230
45	Barley grain (1,3;1,4)-β-glucan content: effects of transcript and sequence variation in genes encoding the corresponding synthase and endohydrolase enzymes. Scientific Reports, 2019, 9, 17250.	3.3	24
46	BaRTv1.0: an improved barley reference transcript dataset to determine accurate changes in the barley transcriptome using RNA-seq. BMC Genomics, 2019, 20, 968.	2.8	50
47	TRITEX: chromosome-scale sequence assembly of Triticeae genomes with open-source tools. Genome Biology, 2019, 20, 284.	8.8	179
48	Characterisation of barley resistance to rhynchosporium on chromosome 6HS. Theoretical and Applied Genetics, 2019, 132, 1089-1107.	3.6	13
49	Exome Capture for Variant Discovery and Analysis in Barley. Methods in Molecular Biology, 2019, 1900, 283-310.	0.9	5
50	Preparation of Barley Pollen Mother Cells for Confocal and Super Resolution Microscopy. Methods in Molecular Biology, 2019, 1900, 167-179.	0.9	8
51	Interaction between rowâ€ŧype genes in barley controls meristem determinacy and reveals novel routes to improved grain. New Phytologist, 2019, 221, 1950-1965.	7.3	39
52	<i>ELIGULUM-A</i> Regulates Lateral Branch and Leaf Development in Barley. Plant Physiology, 2018, 176, 2750-2760.	4.8	22
53	Genetic dissection of quantitative and qualitative traits using a minimum set of barley Recombinant Chromosome Substitution Lines. BMC Plant Biology, 2018, 18, 340.	3.6	7
54	The Expressed Portion of the Barley Genome. Compendium of Plant Genomes, 2018, , 89-107.	0.5	0

#	Article	IF	CITATIONS
55	Resistance to Rhynchosporium commune in a collection of European spring barley germplasm. Theoretical and Applied Genetics, 2018, 131, 2513-2528.	3.6	17
56	The pseudogenes of barley. Plant Journal, 2018, 93, 502-514.	5.7	14
57	Reducing Stomatal Density in Barley Improves Drought Tolerance without Impacting on Yield. Plant Physiology, 2017, 174, 776-787.	4.8	267
58	A chromosome conformation capture ordered sequence of the barley genome. Nature, 2017, 544, 427-433.	27.8	1,365
59	Construction of a map-based reference genome sequence for barley, Hordeum vulgare L Scientific Data, 2017, 4, 170044.	5.3	130
60	Barley SIX-ROWED SPIKE3 encodes a putative Jumonji C-type H3K9me2/me3 demethylase that represses lateral spikelet fertility. Nature Communications, 2017, 8, 936.	12.8	78
61	Extreme Suppression of Lateral Floret Development by a Single Amino Acid Change in the VRS1 Transcription Factor. Plant Physiology, 2017, 175, 1720-1731.	4.8	49
62	Evaluation and improvement of the regulatory inference for large co-expression networks with limited sample size. BMC Systems Biology, 2017, 11, 62.	3.0	14
63	Observation of Extensive Chromosome Axis Remodeling during the "Diffuse-Phase―of Meiosis in Large Genome Cereals. Frontiers in Plant Science, 2017, 8, 1235.	3.6	30
64	Development and Evaluation of a Barley 50k iSelect SNP Array. Frontiers in Plant Science, 2017, 8, 1792.	3.6	257
65	Levels of Intra-specific AFLP Diversity in Tuber-Bearing Potato Species with Different Breeding Systems and Ploidy Levels. Frontiers in Genetics, 2017, 8, 119.	2.3	14
66	A Genome Wide Association Study of arabinoxylan content in 2-row spring barley grain. PLoS ONE, 2017, 12, e0182537.	2.5	29
67	Alternative Splicing of Barley Clock Genes in Response to Low Temperature. PLoS ONE, 2016, 11, e0168028.	2.5	39
68	HvDep1 Is a Positive Regulator of Culm Elongation and Grain Size in Barley and Impacts Yield in an Environment-Dependent Manner. PLoS ONE, 2016, 11, e0168924.	2.5	77
69	SNP-Based QTL Mapping of 15 Complex Traits in Barley under Rain-Fed and Well-Watered Conditions by a Mixed Modeling Approach. Frontiers in Plant Science, 2016, 7, 909.	3.6	46
70	A homolog of Blade-On-Petiole 1 and 2 (BOP1/2) controls internode length and homeotic changes of the barley inflorescence. Plant Physiology, 2016, 171, pp.00124.2016.	4.8	41
71	Exome sequencing of geographically diverse barley landraces and wild relatives gives insights into environmental adaptation. Nature Genetics, 2016, 48, 1024-1030.	21.4	259
72	Genomic analysis of 6,000-year-old cultivated grain illuminates the domestication history of barley. Nature Genetics, 2016, 48, 1089-1093.	21.4	122

#	Article	IF	CITATIONS
73	A spontaneous mutation in MutLâ€Homolog 3 (Hv <scp>MLH</scp> 3) affects synapsis and crossover resolution in the barley desynaptic mutant <i>des10</i> . New Phytologist, 2016, 212, 693-707.	7.3	44
74	The Dynamics of Transcript Abundance during Cellularization of Developing Barley Endosperm. Plant Physiology, 2016, 170, 1549-1565.	4.8	47
75	The INDETERMINATE DOMAIN Protein BROAD LEAF1 Limits Barley Leaf Width by Restricting Lateral Proliferation. Current Biology, 2016, 26, 903-909.	3.9	37
76	The Maltase Involved in Starch Metabolism in Barley Endosperm Is Encoded by a Single Gene. PLoS ONE, 2016, 11, e0151642.	2.5	19
77	Genetic Diversity and Genome Wide Association Study of β-Glucan Content in Tetraploid Wheat Grains. PLoS ONE, 2016, 11, e0152590.	2.5	40
78	The effect of temperature on the male and female recombination landscape of barley. New Phytologist, 2015, 208, 421-429.	7.3	105
79	The Barley <i>Uniculme4</i> Gene Encodes a BLADE-ON-PETIOLE-Like Protein That Controls Tillering and Leaf Patterning. Plant Physiology, 2015, 168, 164-174.	4.8	85
80	Evolutionary Relationships Among Barley and Arabidopsis Core Circadian Clock and Clock-Associated Genes. Journal of Molecular Evolution, 2015, 80, 108-119.	1.8	59
81	Evolution of the Grain Dispersal System in Barley. Cell, 2015, 162, 527-539.	28.9	265
82	Evolutionary Dynamics of the Cellulose Synthase Gene Superfamily in Grasses. Plant Physiology, 2015, 168, 968-983.	4.8	55
83	A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome. Genome Biology, 2015, 16, 26.	8.8	256
84	Barley: a translational model for adaptation to climate change. New Phytologist, 2015, 206, 913-931.	7.3	257
85	A Genome-Wide Association Study for Culm Cellulose Content in Barley Reveals Candidate Genes Co-Expressed with Members of the CELLULOSE SYNTHASE A Gene Family. PLoS ONE, 2015, 10, e0130890.	2.5	24
86	Genome Wide Association Mapping for Arabinoxylan Content in a Collection of Tetraploid Wheats. PLoS ONE, 2015, 10, e0132787.	2.5	56
87	The USDA Barley Core Collection: Genetic Diversity, Population Structure, and Potential for Genome-Wide Association Studies. PLoS ONE, 2014, 9, e94688.	2.5	188
88	The Synaptonemal Complex Protein ZYP1 Is Required for Imposition of Meiotic Crossovers in Barley. Plant Cell, 2014, 26, 729-740.	6.6	88
89	The lowâ€recombining pericentromeric region of barley restricts gene diversity and evolution but not gene expression. Plant Journal, 2014, 79, 981-992.	5.7	30
90	Modulation of Meiotic Recombination. Biotechnology in Agriculture and Forestry, 2014, , 311-329.	0.2	10

#	Article	IF	CITATIONS
91	A genome wide association scan for (1,3;1,4)-Ĵ²-glucan content in the grain of contemporary 2-row Spring and Winter barleys. BMC Genomics, 2014, 15, 907.	2.8	57
92	Barley has two peroxisomal ABC transporters with multiple functions in β-oxidation. Journal of Experimental Botany, 2014, 65, 4833-4847.	4.8	26
93	An evaluation of genotyping by sequencing (GBS) to map the Breviaristatum-e (ari-e) locus in cultivated barley. BMC Genomics, 2014, 15, 104.	2.8	145
94	In silico identification and characterization of conserved plant microRNAs in barley. Open Life Sciences, 2014, 9, 841-852.	1.4	1
95	A Sequence-Ready Physical Map of Barley Anchored Genetically by Two Million Single-Nucleotide Polymorphisms Â. Plant Physiology, 2014, 164, 412-423.	4.8	77
96	Genetic Diversity and Ecological Niche Modelling of Wild Barley: Refugia, Large-Scale Post-LGM Range Expansion and Limited Mid-Future Climate Threats?. PLoS ONE, 2014, 9, e86021.	2.5	46
97	The Barley Genome Sequence Assembly Reveals Three Additional Members of the CslF (1,3;1,4)-β-Glucan Synthase Gene Family. PLoS ONE, 2014, 9, e90888.	2.5	39
98	Barley whole exome capture: a tool for genomic research in the genus <i>Hordeum</i> and beyond. Plant Journal, 2013, 76, 494-505.	5.7	260
99	Anchoring and ordering <scp>NGS</scp> contig assemblies by population sequencing (<scp>POPSEQ</scp>). Plant Journal, 2013, 76, 718-727.	5.7	264
100	FR-H3: a new QTL to assist in the development of fall-sown barley with superior low temperature tolerance. Theoretical and Applied Genetics, 2013, 126, 335-347.	3.6	49
101	Feeding the future. Nature, 2013, 499, 23-24.	27.8	464
102	Variation in the interaction between alleles of <i>HvAPETALA2</i> and microRNA172 determines the density of grains on the barley inflorescence. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16675-16680.	7.1	121
103	A physical, genetic and functional sequence assembly of the barley genome. Nature, 2012, 491, 711-716.	27.8	1,416
104	Spatiotemporal Asymmetry of the Meiotic Program Underlies the Predominantly Distal Distribution of Meiotic Crossovers in Barley. Plant Cell, 2012, 24, 4096-4109.	6.6	185
105	Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nature Genetics, 2012, 44, 1388-1392.	21.4	477
106	Induced mutations in circadian clock regulator <i>Mat-a</i> facilitated short-season adaptation and range extension in cultivated barley. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4326-4331.	7.1	163
107	Analysis of the barley bract suppression gene Trd1. Theoretical and Applied Genetics, 2012, 125, 33-45.	3.6	35
108	Genome-wide association mapping of agronomic and morphologic traits in highly structured populations of barley cultivars. Theoretical and Applied Genetics, 2012, 124, 233-246.	3.6	122

#	Article	IF	CITATIONS
109	High resolution mapping of Dense spike-ar (dsp.ar) to the genetic centromere of barley chromosome 7H. Theoretical and Applied Genetics, 2012, 124, 373-384.	3.6	39
110	Genetic Dissection of Barley Morphology and Development Â. Plant Physiology, 2011, 155, 617-627.	4.8	188
111	Genome sequence and analysis of the tuber crop potato. Nature, 2011, 475, 189-195.	27.8	1,912
112	Unlocking the Barley Genome by Chromosomal and Comparative Genomics Â. Plant Cell, 2011, 23, 1249-1263.	6.6	448
113	Highly parallel gene-to-BAC addressing using microarrays. BioTechniques, 2011, 50, 165-174.	1.8	8
114	An exceptionally high nucleotide and haplotype diversity and a signature of positive selection for the eIF4E resistance gene in barley are revealed by allele mining and phylogenetic analyses of natural populations. Molecular Ecology, 2011, 20, no-no.	3.9	48
115	Analysis of >1000 single nucleotide polymorphisms in geographically matched samples of landrace and wild barley indicates secondary contact and chromosomeâ€level differences in diversity around domestication genes. New Phytologist, 2011, 191, 564-578.	7.3	84
116	INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. Nature Genetics, 2011, 43, 169-172.	21.4	302
117	Patterns of polymorphism and linkage disequilibrium in cultivated barley. Theoretical and Applied Genetics, 2011, 122, 523-531.	3.6	41
118	Combining genetical genomics and bulked segregant analysis-based differential expression: an approach to gene localization. Theoretical and Applied Genetics, 2011, 122, 1375-1383.	3.6	20
119	Crops that feed the world 4. Barley: a resilient crop? Strengths and weaknesses in the context of food security, 2011, 3, 141-178.	5.3	216
120	Exploiting induced variation to dissect quantitative traits in barley. Biochemical Society Transactions, 2010, 38, 683-688.	3.4	11
121	Expression quantitative trait loci analysis in plants. Plant Biotechnology Journal, 2010, 8, 10-27.	8.3	90
122	An eQTL Analysis of Partial Resistance to Puccinia hordei in Barley. PLoS ONE, 2010, 5, e8598.	2.5	77
123	Genome-wide association mapping to candidate polymorphism resolution in the unsequenced barley genome. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21611-21616.	7.1	259
124	An Integrated Resource for Barley Linkage Map and Malting Quality QTL Alignment. Plant Genome, 2009, 2, .	2.8	116
125	The International Barley Sequencing Consortium—At the Threshold of Efficient Access to the Barley Genome Â. Plant Physiology, 2009, 149, 142-147.	4.8	195
126	Robust Detection and Genotyping of Single Feature Polymorphisms from Gene Expression Data. PLoS Computational Biology, 2009, 5, e1000317.	3.2	16

Robbie Waugh

#	Article	IF	CITATIONS
127	The emergence of whole genome association scans in barley. Current Opinion in Plant Biology, 2009, 12, 218-222.	7.1	138
128	Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics, 2009, 10, 582.	2.8	570
129	The 172-kb genomic DNA region of the O. rufipogon yld1.1 locus: comparative sequence analysis with O. sativa ssp. japonica and O. sativa ssp. indica. Functional and Integrative Genomics, 2009, 9, 97-108.	3.5	3
130	Reconstruction of monocotelydoneous proto-chromosomes reveals faster evolution in plants than in animals. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14908-14913.	7.1	144
131	QTL mapping of yield, agronomic and quality traits in tetraploid potato (Solanum tuberosum subsp.) Tj ETQq1 1	0.784314 3.6	4 rg <mark>B</mark> T /Overl
132	Exploiting regulatory variation to identify genes underlying quantitative resistance to the wheat stem rust pathogen Puccinia graminis f. sp. tritici in barley. Theoretical and Applied Genetics, 2008, 117, 261-272.	3.6	43
133	Gene expression quantitative trait locus analysis of 16 000 barley genes reveals a complex pattern of genomeâ€wide transcriptional regulation. Plant Journal, 2008, 53, 90-101.	5.7	158
134	Tissueâ€dependent limited pleiotropy affects gene expression in barley. Plant Journal, 2008, 56, 287-296.	5.7	26
135	Cereal breeding takes a walk on the wild side. Trends in Genetics, 2008, 24, 24-32.	6.7	355
136	Meeting Report The Aaronsohn-ITMI International Conference. Israel Journal of Plant Sciences, 2007, 55, 315-319.	0.5	1
137	Harvesting the potential of induced biological diversity. Trends in Plant Science, 2006, 11, 71-79.	8.8	54
138	An atlas of gene expression from seed to seed through barley development. Functional and Integrative Genomics, 2006, 6, 202-211.	3.5	138
139	Construction of a 10,000-Marker Ultradense Genetic Recombination Map of Potato: Providing a Framework for Accelerated Gene Isolation and a Genomewide Physical Map. Genetics, 2006, 173, 1075-1087.	2.9	212
140	Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18656-18661.	7.1	309
141	Evidence that the recessive bymovirus resistance locus rym4 in barley corresponds to the eukaryotic translation initiation factor 4E gene. Molecular Plant Pathology, 2005, 6, 449-458.	4.2	115
142	Characterisation and functional analysis of two barley caleosins expressed during barley caryopsis development. Planta, 2005, 221, 513-522.	3.2	27
143	Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Molecular Genetics and Genomics, 2005, 274, 515-527.	2.1	250
144	Direct targeting and rapid isolation of BAC clones spanning a defined chromosome region. Functional and Integrative Genomics, 2005, 5, 97-103.	3.5	47

#	Article	IF	CITATIONS
145	A comparative analysis of transcript abundance using SAGE and Affymetrix arrays. Functional and Integrative Genomics, 2005, 5, 163-174.	3.5	36
146	A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14694-14699.	7.1	382
147	Interval Mapping of Quantitative Trait Loci for Resistance to Late Blight [Phytophthora infestans (Mont.) de Bary], Height and Maturity in a Tetraploid Population of Potato (Solanum tuberosum subsp.) Tj ETQq1	12007843	1 4og BT /O∨
148	A structured mutant population for forward and reverse genetics in Barley (<i>Hordeum vulgare</i>) Tj ETQq0 0 C) rgBT /Ove 5.7	erlock 10 Tf
149	A barley cultivation-associated polymorphism conveys resistance to powdery mildew. Nature, 2004, 430, 887-891.	27.8	202
150	Dissection and analysis of quantitative disease resistance in tetraploid potato. Euphytica, 2004, 137, 13-18.	1.2	15
151	Genetical dissection of H3-mediated polygenic PCN resistance in a heterozygous autotetraploid potato population. Molecular Breeding, 2004, 14, 105-116.	2.1	45
152	HAPPY mapping in a plant genome: reconstruction and analysis of a highâ€resolution physical map of a 1.9ÂMbp region of <i>Arabidopsis thaliana</i> chromosome 4. Plant Biotechnology Journal, 2003, 1, 23-31.	8.3	30
153	Toward a Marker-Dense Meiotic Map of the Potato Genome: Lessons From Linkage Group I. Genetics, 2003, 165, 2107-2116.	2.9	63
154	Title is missing!. Molecular Breeding, 2000, 6, 553-568.	2.1	124
155	UK CropNet: a collection of databases and bioinformatics resources for crop plant genomics. Nucleic Acids Research, 2000, 28, 104-107.	14.5	16
156	Computational and Experimental Characterization of Physically Clustered Simple Sequence Repeats in Plants. Genetics, 2000, 156, 847-854.	2.9	369
157	Intimate association of microsatellite repeats with retrotransposons and other dispersed repetitive elements in barley . Plant Journal, 1999, 17, 415-425.	5.7	165
158	Using molecular markers to determine barleys most suitable for malt whisky distilling. Molecular Breeding, 1999, 5, 103-109.	2.1	35
159	Phylogenetic relationships betweenVicia faba (Fabaceae) and related species inferred from chloroplasttrnL sequences. Plant Systematics and Evolution, 1998, 212, 247-259.	0.9	20
160	An assessment of genetic diversity among Camellia sinensis L. (cultivated tea) and its wild relatives based on randomly amplified polymorphic DNA and organelle-specific STS. Heredity, 1997, 78, 603-611.	2.6	62
161	Title is missing!. Molecular Breeding, 1997, 3, 127-136.	2.1	322
162	Organisation and expression of a potato (Solanum tuberosum) protein kinase gene. Plant Science, 1996, 118, 71-80.	3.6	3

#	Article	IF	CITATIONS
163	Genomic organisation of plant U14 snoRNA genes. Biochemical Society Transactions, 1995, 23, 314S-314S.	3.4	1
164	Polymerase chain reaction-based assays for the characterisation of plant genetic resources. Electrophoresis, 1995, 16, 1726-1730.	2.4	47
165	Molecular characterisation of plant U14 small nucleolar RNA genes: closely linked genes are transcribed as polycistronic U14 transcripts. Nucleic Acids Research, 1994, 22, 5196-5203.	14.5	46
166	Parameters affecting the activity of antisense RNA sequences in tobacco protoplasts. Plant Cell Reports, 1994, 13, 703-8.	5.6	1
167	Potato (Solanum tuberosum) invertase-encoding cDNAs and their differential expression. Gene, 1994, 145, 211-214.	2.2	39
168	cDNA cloning and expression of a potato (Solanum tuberosum) invertase. Plant Molecular Biology, 1993, 22, 917-922.	3.9	38
169	Differential expression of U5snRNA gene variants in maize (Zea mays) protoplasts. Plant Molecular Biology, 1993, 21, 133-143.	3.9	16
170	Detection of a plant protein analogous to the yeast spliceosomal protein, PRP8. FEBS Letters, 1993, 318, 4-6.	2.8	13
171	Molecular characterisation of inter and intra-specific somatic hybrids of potato using randomly amplified polymorphic DNA (RAPD) markers. Molecular Genetics and Genomics, 1992, 233, 469-475.	2.4	99
172	Characterization and expression of U1snRNA genes from potato. Plant Molecular Biology, 1992, 19, 959-971.	3.9	14
173	Using RAPD markers for crop improvement. Trends in Biotechnology, 1992, 10, 186-191.	9.3	156
174	Sequence variation and linkage of potato U2snRNA-encoding genes established by PCR. Gene, 1991, 107, 197-204.	2.2	13
175	Isolation of a potato U6 small nuclear RNA gene. Biochemical Society Transactions, 1991, 19, 340S-340S.	3.4	0
176	Evolutionary conservation of the spliceosaomal protein, U2 B― Nucleic Acids Research, 1991, 19, 5213-5217.	14.5	34
177	Sequence and expression of potato U2 snRNA genes. Nucleic Acids Research, 1991, 19, 249-256.	14.5	28
178	Plant UsnRNA genes. Molecular Biology Reports, 1990, 14, 147-147.	2.3	1
179	Maize U2 snRNAs: gene sequence and expression. Nucleic Acids Research, 1989, 17, 8991-9001.	14.5	40
180	The evolutionary patterns of barley pericentromeric chromosome regions, as shaped by linkage disequilibrium and domestication. Plant Journal, 0, , .	5.7	3