
Gaetano Di Chiara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7679599/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cannabinoid and Heroin Activation of Mesolimbic Dopamine Transmission by a Common µ1 Opioid Receptor Mechanism. Science, 1997, 276, 2048-2050.	6.0	1,059
2	Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Nature, 1996, 382, 255-257.	13.7	1,015
3	Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behavioural Brain Research, 2002, 137, 75-114.	1.2	840
4	Dopamine and drug addiction: the nucleus accumbens shell connection. Neuropharmacology, 2004, 47, 227-241.	2.0	777
5	The role of dopamine in drug abuse viewed from the perspective of its role in motivation. Drug and Alcohol Dependence, 1995, 38, 95-137.	1.6	605
6	Neurobiology of opiate abuse. Trends in Pharmacological Sciences, 1992, 13, 185-193.	4.0	520
7	Reward system and addiction: what dopamine does and doesn't do. Current Opinion in Pharmacology, 2007, 7, 69-76.	1.7	463
8	Modulatory functions of neurotransmitters in the striatum: ACh/dopamine/NMDA interactions. Trends in Neurosciences, 1994, 17, 228-233.	4.2	443
9	Differential Influence of Associative and Nonassociative Learning Mechanisms on the Responsiveness of Prefrontal and Accumbal Dopamine Transmission to Food Stimuli in Rats Fed <i>Ad Libitum</i> . Journal of Neuroscience, 1997, 17, 851-861.	1.7	355
10	A motivational learning hypothesis of the role of mesolimbic dopamine in compulsive drug use. Journal of Psychopharmacology, 1998, 12, 54-67.	2.0	300
11	Increase of extracellular dopamine in the prefrontal cortex: a trait of drugs with antidepressant potential?. Psychopharmacology, 1994, 115, 285-288.	1.5	297
12	Differential Expression of Motivational Stimulus Properties by Dopamine in Nucleus Accumbens Shell versus Core and Prefrontal Cortex. Journal of Neuroscience, 2002, 22, 4709-4719.	1.7	277
13	Modulation of feeding-induced activation of mesolimbic dopamine transmission by appetitive stimuli and its relation to motivational state. European Journal of Neuroscience, 1999, 11, 4389-4397.	1.2	231
14	Reciprocal changes in prefrontal and limbic dopamine responsiveness to aversive and rewarding stimuli after chronic mild stress: implications for the psychobiology of depression. Biological Psychiatry, 1999, 46, 1624-1633.	0.7	231
15	Depression of Mesolimbic Dopamine Transmission and Sensitization to Morphine During Opiate Abstinence. Journal of Neurochemistry, 1992, 58, 1620-1625.	2.1	205
16	A dopamine-μ1opioid link in the rat ventral tegmentum shared by palatable food (Fonzies) and non-psychostimulant drugs of abuse. European Journal of Neuroscience, 1998, 10, 1179-1187.	1.2	177
17	In-vivo brain dialysis of neurotransmitters. Trends in Pharmacological Sciences, 1990, 11, 116-121.	4.0	169
18	Preferential Stimulation of Dopamine Release in the Nucleus Accumbens by Opiates, Alcohol, and Barbiturates: Studies with Transcerebral Dialysis in Freely Moving Rats. Annals of the New York Academy of Sciences, 1986, 473, 367-381.	1.8	157

GAETANO DI CHIARA

#	Article	IF	CITATIONS
19	Contribution of Blockade of the Noradrenaline Carrier to the Increase of Extracellular Dopamine in the Rat Prefrontal Cortex by Amphetamine and Cocaine. European Journal of Neuroscience, 1997, 9, 2077-2085.	1.2	153
20	Differential Effects of Caffeine on Dopamine and Acetylcholine Transmission in Brain Areas of Drug-naive and Caffeine-pretreated Rats. Neuropsychopharmacology, 2002, 27, 182-193.	2.8	150
21	Stimulation of <i>In Vivo</i> Dopamine Transmission in the Bed Nucleus of Stria Terminalis by Reinforcing Drugs. Journal of Neuroscience, 2000, 20, RC102-RC102.	1.7	145
22	On the preferential release of dopamine in the nucleus accumbens by amphetamine: further evidence obtained by vertically implanted concentric dialysis probes. Psychopharmacology, 1993, 112, 398-402.	1.5	120
23	Ethanol as a neurochemical surrogate of conventional reinforcers: The dopamine-opioid link. Alcohol, 1996, 13, 13-17.	0.8	115
24	A Role for Dopamine D1 Receptors of the Nucleus Accumbens Shell in Conditioned Taste Aversion Learning. Journal of Neuroscience, 2001, 21, 6897-6904.	1.7	114
25	Permissive role of D-1 receptor stimulation for the expression of D-2 mediated behavioral responses: a quantitative phenomenological study in rats. Life Sciences, 1987, 41, 2135-2145.	2.0	112
26	Haloperidol increases and apomorphine decreases striatal dopamine metabolism after destruction of striatal dopamine-sensitive adenylate cyclase by kainic acid. Brain Research, 1977, 130, 374-382.	1.1	107
27	Differential neurochemical and behavioral adaptation to cocaine after response contingent and noncontingent exposure in the rat. Psychopharmacology, 2007, 191, 653-667.	1.5	107
28	Pharmacology and Neurochemistry of Apomorphine. Advances in Pharmacology, 1978, 15, 87-160.	1.2	106
29	Preferential increase of extracellular dopamine in the rat nucleus accumbens shell as compared to that in the core during acquisition and maintenance of intravenous nicotine self-administration. Psychopharmacology, 2006, 184, 435-446.	1.5	99
30	Dissociation of physical abstinence signs from changes in extracellular dopamine in the nucleus accumbens and in the prefrontal cortex of nicotine dependent rats. Drug and Alcohol Dependence, 2000, 58, 93-102.	1.6	86
31	Morphine-conditioned single-trial place preference: role of nucleus accumbens shell dopamine receptors in acquisition, but not expression. Psychopharmacology, 2006, 187, 143-153.	1.5	86
32	Selective psychostimulant sensitization by food restriction: differential changes in accumbens shell and core dopamine. European Journal of Neuroscience, 2003, 18, 2326-2334.	1.2	82
33	Nicotine-conditioned single-trial place preference: selective role of nucleus accumbens shell dopamine D1 receptors in acquisition. Psychopharmacology, 2006, 184, 447-455.	1.5	82
34	Chronic desipramine and fluoxetine differentially affect extracellular dopamine in the rat prefrontal cortex. Psychopharmacology, 1996, 127, 83-87.	1.5	81
35	Endogenous Dopamine Facilitates Striatalln Vivo Acetylcholine Release by Acting on D1Receptors Localized in the Striatum. Journal of Neurochemistry, 1992, 59, 1555-1557.	2.1	76
36	Effect of amphetamine, cocaine and depolarization by high potassium on extracellular dopamine in the nucleus accumbens shell of SHR rats. An in vivo microdyalisis study. Neuroscience and Biobehavioral Reviews, 2003, 27, 653-659.	2.9	75

GAETANO DI CHIARA

#	Article	IF	CITATIONS
37	Monitoring extracellular dopamine in the rat nucleus accumbens shell and core during acquisition and maintenance of intravenous WIN 55,212-2 self-administration. Psychopharmacology, 2006, 188, 63-74.	1.5	75
38	Cumulative effect of norepinephrine and dopamine carrier blockade on extracellular dopamine increase in the nucleus accumbens shell, bed nucleus of stria terminalis and prefrontal cortex. Journal of Neurochemistry, 2006, 96, 473-481.	2.1	69
39	Behavioral sensitization to Δ ⁹ â€ŧetrahydrocannabinol and crossâ€sensitization with morphine: differential changes in accumbal shell and core dopamine transmission. Journal of Neurochemistry, 2008, 106, 1586-1593.	2.1	67
40	Native CB1 receptor affinity, intrinsic activity and accumbens shell dopamine stimulant properties of third generation SPICE/K2 cannabinoids: BB-22, 5F-PB-22, 5F-AKB-48 and STS-135. Neuropharmacology, 2016, 105, 630-638.	2.0	67
41	Differential impact of pavlovian drug conditioned stimuli on in vivo dopamine transmission in the rat accumbens shell and core and in the prefrontal cortex. Psychopharmacology, 2007, 191, 689-703.	1.5	66
42	Blunting of reactivity of dopamine transmission to palatable food: a biochemical marker of anhedonia in the CMS model?. Psychopharmacology, 1997, 134, 351-353.	1.5	60
43	Reciprocal effects of response contingent and noncontingent intravenous heroin on in vivo nucleus accumbens shell versus core dopamine in the rat: a repeated sampling microdialysis study. Psychopharmacology, 2007, 194, 103-116.	1.5	59
44	Reduced dopamine in peripheral blood lymphocytes in Parkinson's disease. NeuroReport, 1999, 10, 2907-2910.	0.6	58
45	Differential adaptive properties of accumbens shell dopamine responses to ethanol as a drug and as a motivational stimulus. European Journal of Neuroscience, 2003, 17, 1465-1472.	1.2	54
46	Strain dependence of adolescent Cannabis influence on heroin reward and mesolimbic dopamine transmission in adult Lewis and Fischer 344 rats. Addiction Biology, 2015, 20, 132-142.	1.4	54
47	Biochemical parameters of dopaminergic and GABAergic neurotransmission in the CNS of Roman high-avoidance and Roman low-avoidance rats. Behavior Genetics, 1997, 27, 527-536.	1.4	53
48	Effects of cocaine and morphine in rats from two psychogenetically selected lines: a behavioral and brain dialysis study. Behavior Genetics, 1997, 27, 537-546.	1.4	52
49	Differential effects of intravenous R,S-(�)-3,4-methylenedioxymethamphetamine (MDMA, Ecstasy) and its S(+)- and R(?)-enantiomers on dopamine transmission and extracellular signal regulated kinase phosphorylation (pERK) in the rat nucleus accumbens shell and core. Journal of Neurochemistry, 2007, 102, 121-132.	2.1	51
50	Dopamine in disturbances of food and drug motivated behavior: A case of homology?. Physiology and Behavior, 2005, 86, 9-10.	1.0	47
51	Lesions of substantia nigra by kainic acid: Effects on apomorphine-induced stereotyped behaviour. Brain Research, 1980, 191, 67-78.	1.1	46
52	Substantia nigra as a site of origin of dopamine-dependent motor syndromes induced by stimulation of μ and δ opioid receptors. Brain Research, 1989, 487, 120-130.	1.1	46
53	Behavioural expression of D-1 receptor supersensitivity depends on previous stimulation of D-2 receptors. Life Sciences, 1987, 40, 245-251.	2.0	44
54	Effect of 3,4-methylendioxymethamphetamine (MDMA, "ecstasyâ€) on dopamine transmission in the nucleus accumbens shell and core. Brain Research, 2005, 1055, 143-148.	1.1	44

#	Article	IF	CITATIONS
55	Lactoferrin- and antitransferrin-modified liposomes for brain targeting of the NK3 receptor agonist senktide: Preparation and in vivo evaluation. International Journal of Pharmaceutics, 2015, 479, 129-137.	2.6	44
56	Facilitation of conditioned taste aversion learning by systemic amphetamine: role of nucleus accumbens shell dopamine D1 receptors. European Journal of Neuroscience, 2003, 18, 2025-2030.	1.2	43
57	Reciprocal responsiveness of nucleus accumbens shell and core dopamine to food- and drug-conditioned stimuli. Psychopharmacology, 2011, 214, 687-697.	1.5	38
58	Differences in dopamine responsiveness to drugs of abuse in the nucleus accumbens shell and core of Lewis and Fischer 344 rats. Journal of Neurochemistry, 2007, 103, 487-499.	2.1	37
59	Changes in Dopamine Transmission in the Nucleus Accumbens Shell and Core during Ethanol and Sucrose Self-Administration. Frontiers in Behavioral Neuroscience, 2017, 11, 71.	1.0	37
60	Endocannabinoid 2-Arachidonoylglycerol Self-Administration by Sprague-Dawley Rats and Stimulation of in vivo Dopamine Transmission in the Nucleus Accumbens Shell. Frontiers in Psychiatry, 2014, 5, 140.	1.3	36
61	Dopamine Depletion Preferentially Impairs D1over D2-Receptor Regulation of Striatal In Vivo Acetylcholine Release. Journal of Neurochemistry, 1992, 59, 353-357.	2.1	30
62	Local cerebral glucose utilization after D1 receptor stimulation in 6-OHDA lesioned rats: Effect of sensitization (priming) with a dopaminergic agonist. Synapse, 1993, 13, 264-269.	0.6	30
63	Addiction theory matters—Why there is no dependence on caffeine or antidepressant medication. Addiction Biology, 2020, 25, e12735.	1.4	30
64	Impairment of acquisition of intravenous cocaine self-administration by RNA-interference of dopamine D1-receptors in the nucleus accumbens shell. Neuropharmacology, 2015, 89, 398-411.	2.0	29
65	A systematic microdialysis study of dopamine transmission in the accumbens shell/core and prefrontal cortex after acute antipsychotics. Psychopharmacology, 2015, 232, 1427-1440.	1.5	28
66	Differential effect of MK 801 and scopolamine on c-fos expression induced by L-dopa in the striatum of 6-hydroxydopamine lesioned rats. Synapse, 1994, 18, 288-293.	0.6	27
67	Role of dopamine D ₁ receptors in caffeineâ€mediated ERK phosphorylation in the rat brain. Synapse, 2010, 64, 341-349.	0.6	20
68	Influence of morphine sensitization on the responsiveness of mesolimbic and mesocortical dopamine transmission to appetitive and aversive gustatory stimuli. Psychopharmacology, 2011, 216, 345-353.	1.5	20
69	Lesion of medial prefrontal dopamine terminals abolishes habituation of accumbens shell dopamine responsiveness to taste stimuli. European Journal of Neuroscience, 2013, 37, 613-622.	1.2	19
70	Nicotine differentially affects dopamine transmission in the nucleus accumbens shell and core of Lewis and Fischer 344 rats. Neuropharmacology, 2009, 57, 496-501.	2.0	18
71	Monitoring dopamine transmission in the rat nucleus accumbens shell and core during acquisition of nose-poking for sucrose. Behavioural Brain Research, 2015, 287, 200-206.	1.2	18
72	Adolescent cannabis exposure increases heroin reinforcement in rats genetically vulnerable to addiction. Neuropharmacology, 2020, 166, 107974.	2.0	18

GAETANO DI CHIARA

#	Article	IF	CITATIONS
73	Differential activation of accumbens shell and core dopamine by sucrose reinforcement with nose poking and with lever pressing. Behavioural Brain Research, 2015, 294, 215-223.	1.2	17
74	Widespread reduction of dopamine cell bodies and terminals in adult rats exposed to a low dose regimen of MDMA during adolescence. Neuropharmacology, 2017, 123, 385-394.	2.0	17
75	Extracellular Striatal Concentrations of Endogenous 3,4â€Dihydroxyphenylalanine in the Absence of a Decarboxylase Inhibitor: A Dynamic Index of Dopamine Synthesis In Vivo. Journal of Neurochemistry, 1992, 59, 2230-2236.	2.1	16
76	Loss of striatal neurons after local microinjection of colchicine. Neuroscience Letters, 1980, 16, 131-135.	1.0	14
77	Longâ€ŧerm increase in GAD67 mRNA expression in the central amygdala of rats sensitized by drugs and stress. European Journal of Neuroscience, 2008, 27, 1220-1230.	1.2	14
78	Neuroleptics increase striatal acetylcholine release by a sequential D-1 and D-2 receptor mechanism. NeuroReport, 1993, 4, 1335-1338.	0.6	13
79	Hippocampal Î, activity after systemic administration of a non-peptide δ-opioid agonist in freely-moving rats: relationship to D1 dopamine receptors. Brain Research, 1997, 776, 24-29.	1.1	13
80	Repeated exposure to JWHâ€018 induces adaptive changes in the mesolimbic and mesocortical dopaminergic pathways, glial cells alterations, and behavioural correlates. British Journal of Pharmacology, 2021, 178, 3476-3497.	2.7	12
81	Differential influence of morphine sensitization on accumbens shell and core dopamine responses to morphine- and food-conditioned stimuli. Psychopharmacology, 2013, 225, 697-706.	1.5	11
82	Differential involvement of dopamine D1 receptors in morphine- and lithium-conditioned saccharin avoidance. Physiology and Behavior, 2009, 96, 73-77.	1.0	10
83	Brain dialysis of monoamines. Handbook of Behavioral Neuroscience, 1991, 7, 175-187.	0.0	10
84	Behavioral and Neurochemical Pharmacology of 5-HT6 Receptors Related to Reward and Reinforcement. International Review of Neurobiology, 2011, 96, 111-139.	0.9	9
85	Role of nucleus accumbens μ opioid receptors in the effects of morphine on ERK1/2 phosphorylation. Psychopharmacology, 2016, 233, 2943-2954.	1.5	9
86	A within-subjects microdialysis/behavioural study of the role of striatal acetylcholine in D1-dependent turning. Behavioural Brain Research, 1999, 103, 219-228.	1.2	7
87	Reinforcing drug seeking. Trends in Pharmacological Sciences, 1992, 13, 428-429.	4.0	6
88	Loren Parsons' contribution to addiction neurobiology. Addiction Biology, 2018, 23, 1207-1222.	1.4	6
89	Conditioned saccharin avoidance and sensitization to drugs of abuse. Behavioural Brain Research, 2010, 214, 248-253.	1.2	5
90	In vivo dopamine agonist properties of rotigotine: Role of D 1 and D 2 receptors. European Journal of Pharmacology, 2016, 788, 183-191.	1.7	5

#	Article	IF	CITATIONS
91	Problems in GABA Research from Brain to Bacteria. Trends in Neurosciences, 1983, 6, 155.	4.2	4
92	Chapter VI Dopamine, motivation and reward. Handbook of Chemical Neuroanatomy, 2005, 21, 303-394.	0.3	4
93	Stimulation of Dopamine Release in the Bed Nucleus of Stria Terminalis: A Trait of Atypical Antipsychotics?. Annals of the New York Academy of Sciences, 1999, 877, 707-710.	1.8	1
94	Preface. Progress in Brain Research, 2014, 211, ix.	0.9	1
95	Neurobiology of Stereotyped Behaviour. Trends in Pharmacological Sciences, 1990, 11, 515-516.	4.0	0