Michael A Mccarthy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7678966/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A field experiment characterizing variable detection rates during plant surveys. Conservation Biology, 2022, 36, .	2.4	11
2	Integrating climate change and management scenarios in population models to guide the conservation of marine turtles. Bulletin of Marine Science, 2022, , .	0.4	6
3	Partial migration of Brolgas (<i>Antigone rubicunda</i>) within a restricted range is revealed by GPS tracking. Emu, 2022, 122, 39-50.	0.2	0
4	Using decision science to evaluate global biodiversity indices. Conservation Biology, 2021, 35, 492-501.	2.4	20
5	Reallocating budgets among ongoing and emerging conservation projects. Conservation Biology, 2021, 35, 955-966.	2.4	10
6	Defining and evaluating predictions of joint species distribution models. Methods in Ecology and Evolution, 2021, 12, 394-404.	2.2	30
7	The influence of weather and moon phase on small mammal activity. Australian Mammalogy, 2021, 43, 160.	0.7	3
8	Traits explain invasion of alien plants into tropical rainforests. Ecology and Evolution, 2021, 11, 3808-3819.	0.8	5
9	Predicting mammal responses to pyrodiversity: From microbats to macropods. Biological Conservation, 2021, 256, 109031.	1.9	9
10	Efficient effort allocation in lineâ€transect distance sampling of highâ€density species: When to walk further, measure lessâ€often and gain precision. Methods in Ecology and Evolution, 2021, 12, 962-970.	2.2	4
11	Does intraspecific variation in demography have implications for fire management of an obligateâ€seeder shrub across its geographic range?. Austral Ecology, 2021, 46, 315-323.	0.7	0
12	Fire and biodiversity in the Anthropocene. Science, 2020, 370, .	6.0	240
13	Breeding home range movements of pre-fledged brolga chicks, Antigone rubicunda (Gruidae) in Victoria, Australia – Implications for wind farm planning and conservation. Global Ecology and Conservation, 2019, 20, e00703.	1.0	5
14	Combining capture–recapture data and known ages allows estimation of ageâ€dependent survival rates. Ecology and Evolution, 2019, 9, 90-99.	0.8	3
15	Disentangling the Influence of Past Fires on Subsequent Fires in Mediterranean Landscapes. Ecosystems, 2019, 22, 1338-1351.	1.6	12
16	Optimizing habitat management for amphibians: From simple models to complex decisions. Biological Conservation, 2019, 236, 60-69.	1.9	21
17	Early warning signals of recovery in complex systems. Nature Communications, 2019, 10, 1681.	5.8	52
18	Open access solutions for biodiversity journals: Do not replace one problem with another. Diversity and Distributions, 2019, 25, 5-8.	1.9	19

#	Article	IF	CITATIONS
19	Simultaneous ount models to estimate abundance from counts of unmarked individuals with imperfect detection. Conservation Biology, 2019, 33, 697-708.	2.4	1
20	Sympatric cranes in northern Australia: abundance, breeding success, habitat preference and diet. Emu, 2019, 119, 79-89.	0.2	2
21	A comparison of joint species distribution models for presence–absence data. Methods in Ecology and Evolution, 2019, 10, 198-211.	2.2	58
22	Improving the transparency of statistical reporting in <i>Conservation Letters</i> . Conservation Letters, 2018, 11, e12453.	2.8	6
23	Optimal timing of biodiversity offsetting for metapopulations. Ecological Applications, 2018, 28, 508-521.	1.8	3
24	Managing the timing and speed of vehicles reduces wildlife-transport collision risk. Transportation Research, Part D: Transport and Environment, 2018, 59, 86-95.	3.2	16
25	Declining populations in one of the last refuges for threatened mammal species in northern Australia. Austral Ecology, 2018, 43, 602-612.	0.7	39
26	Redefine statistical significance. Nature Human Behaviour, 2018, 2, 6-10.	6.2	1,763
27	Assessing the sensitivity of biodiversity indices used to inform fire management. Journal of Applied Ecology, 2018, 55, 461-471.	1.9	8
28	Bridging the Divide: Integrating Animal and Plant Paradigms to Secure the Future of Biodiversity in Fire-Prone Ecosystems. Fire, 2018, 1, 29.	1.2	13
29	Seasonal asthma in Melbourne, Australia, and some observations on the occurrence of thunderstorm asthma and its predictability. PLoS ONE, 2018, 13, e0194929.	1.1	47
30	Traits influence detection of exotic plant species in tropical forests. PLoS ONE, 2018, 13, e0202254.	1.1	5
31	An experimental test of whether pyrodiversity promotes mammal diversity in a northern Australian savanna. Journal of Applied Ecology, 2018, 55, 2124-2134.	1.9	23
32	Informing network management using fuzzy cognitive maps. Biological Conservation, 2018, 224, 122-128.	1.9	29
33	Effects of fire on pollinators and pollination. Journal of Applied Ecology, 2017, 54, 313-322.	1.9	57
34	Functional trait changes in the floras of 11 cities across the globe in response to urbanization. Ecography, 2017, 40, 875-886.	2.1	42
35	Factors influencing the use of decision support tools in the development and design of conservation policy. Environmental Science and Policy, 2017, 70, 1-8.	2.4	26
36	Twoâ€step adaptive management for choosing between two management actions. Ecological Applications, 2017, 27, 1210-1222.	1.8	5

#	Article	IF	CITATIONS
37	Interactions between rainfall, fire and herbivory drive resprouter vital rates in a semiâ€arid ecosystem. Journal of Ecology, 2017, 105, 1562-1570.	1.9	24
38	Fire regimes and environmental gradients shape vertebrate and plant distributions in temperate eucalypt forests. Ecosphere, 2017, 8, e01781.	1.0	36
39	Accounting for false mortality in telemetry tag applications. Ecological Modelling, 2017, 355, 116-125.	1.2	6
40	A systematic review reveals changes in where and how we have studied habitat loss and fragmentation over 20 years. Biological Conservation, 2017, 212, 130-138.	1.9	83
41	Topâ€down control of species distributions: feral cats driving the regional extinction of a threatened rodent in northern Australia. Diversity and Distributions, 2017, 23, 272-283.	1.9	47
42	Classifying animals into ecologically meaningful groups: A case study on woodland birds. Biological Conservation, 2017, 214, 184-194.	1.9	5
43	Consistent patterns of vehicle collision risk for six mammal species. Journal of Environmental Management, 2017, 201, 397-406.	3.8	20
44	Adaptive management improves decisions about where to search for invasive species. Biological Conservation, 2017, 212, 249-255.	1.9	7
45	Putting pyrodiversity to work for animal conservation. Conservation Biology, 2017, 31, 952-955.	2.4	56
46	Prioritizing plant eradication targets by re-framing the project prioritization protocol (PPP) for use in biosecurity applications. Biological Invasions, 2017, 19, 859-873.	1.2	10
47	Metaresearch for Evaluating Reproducibility in Ecology and Evolution. BioScience, 2017, 67, biw159.	2.2	41
48	Disentangling the four demographic dimensions of species invasiveness. Journal of Ecology, 2016, 104, 1745-1758.	1.9	55
49	Optimizing ecological survey effort over space and time. Methods in Ecology and Evolution, 2016, 7, 891-899.	2.2	31
50	Planning for ex situ conservation in the face of uncertainty. Conservation Biology, 2016, 30, 599-609.	2.4	40
51	Assessing the costâ€efficiency of environmental <scp>DNA</scp> sampling. Methods in Ecology and Evolution, 2016, 7, 1291-1298.	2.2	103
52	Learning about colonization when managing metapopulations under an adaptive management framework. Ecological Applications, 2016, 26, 279-294.	1.8	12
53	Conserving phylogenetic diversity, with reference to Victorian eucalypts. Proceedings of the Royal Society of Victoria, 2016, 128, 7.	0.3	1
54	Abiotic and biotic interactions determine whether increased colonization is beneficial or detrimental to metapopulation management. Theoretical Population Biology, 2016, 109, 44-53.	0.5	5

#	Article	IF	CITATIONS
55	Models that predict ecosystem impacts of reintroductions should consider uncertainty and distinguish between direct and indirect effects. Biological Conservation, 2016, 196, 211-212.	1.9	9
56	Stochastic Dominance to Account for Uncertainty and Risk in Conservation Decisions. Conservation Letters, 2016, 9, 260-266.	2.8	15
57	A simple framework for a complex problem? Predicting wildlife–vehicle collisions. Ecology and Evolution, 2016, 6, 6409-6421.	0.8	45
58	Identifying hotspots of alien plant naturalisation in Australia: approaches and predictions. Biological Invasions, 2016, 18, 631-645.	1.2	20
59	The IUCN Red List of Ecosystems: Motivations, Challenges, and Applications. Conservation Letters, 2015, 8, 214-226.	2.8	141
60	Costâ€effective assessment of extinction risk with limited information. Journal of Applied Ecology, 2015, 52, 861-870.	1.9	43
61	The changing patterns of plant naturalization in Australia. Diversity and Distributions, 2015, 21, 1038-1050.	1.9	27
62	Consequences of inconsistently classifying woodland birds. Frontiers in Ecology and Evolution, 2015, 3, .	1.1	18
63	Demographic Effects of Habitat Restoration for the Grey-Crowned Babbler Pomatostomus temporalis, in Victoria, Australia. PLoS ONE, 2015, 10, e0130153.	1.1	7
64	Threatened species impact assessments: survey effort requirements based on criteria for cumulative impacts. Diversity and Distributions, 2015, 21, 620-630.	1.9	7
65	ls my species distribution model fit for purpose? Matching data and models to applications. Global Ecology and Biogeography, 2015, 24, 276-292.	2.7	661
66	Phylogenetic diversity meets conservation policy: small areas are key to preserving eucalypt lineages. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140007.	1.8	67
67	Environmental DNA sampling is more sensitive than a traditional survey technique for detecting an aquatic invader. Ecological Applications, 2015, 25, 1944-1952.	1.8	135
68	Plant extirpation at the site scale: implications for eradication programmes. Diversity and Distributions, 2015, 21, 151-162.	1.9	32
69	Improving policy efficiency and effectiveness to save more species: A case study of the megadiverse country Australia. Biological Conservation, 2015, 182, 102-108.	1.9	47
70	The neglected tool in the Bayesian ecologist's shed: a case study testing informative priors' effect on model accuracy. Ecology and Evolution, 2015, 5, 102-108.	0.8	34
71	European newts establish in Australia, marking the arrival of a new amphibian order. Biological Invasions, 2015, 17, 31-37.	1.2	19
72	Distinguishing geographical range shifts from artefacts of detectability and sampling effort. Diversity and Distributions, 2015, 21, 13-22.	1.9	52

#	Article	IF	CITATIONS
73	Incorporating detectability of threatened species into environmental impact assessment. Conservation Biology, 2015, 29, 216-225.	2.4	34
74	Optimal fire histories for biodiversity conservation. Conservation Biology, 2015, 29, 473-481.	2.4	107
75	Ignoring Imperfect Detection in Biological Surveys Is Dangerous: A Response to â€~Fitting and Interpreting Occupancy Models'. PLoS ONE, 2014, 9, e99571.	1.1	142
76	Bayesian Estimates of Transition Probabilities in Seven Small Lithophytic Orchid Populations: Maximizing Data Availability from Many Small Samples. PLoS ONE, 2014, 9, e102859.	1.1	11
77	The Optimal Number of Surveys when Detectability Varies. PLoS ONE, 2014, 9, e115345.	1.1	27
78	Optimal surveillance strategy for invasive species management when surveys stop after detection. Ecology and Evolution, 2014, 4, 1751-1760.	0.8	25
79	Contending with uncertainty in conservation management decisions. Annals of the New York Academy of Sciences, 2014, 1322, 77-91.	1.8	32
80	Prevent, search or destroy? A partially observable model for invasive species management. Journal of Applied Ecology, 2014, 51, 804-813.	1.9	51
81	Nonlinear Effects of Stand Age on Fire Severity. Conservation Letters, 2014, 7, 355-370.	2.8	146
82	Understanding coâ€occurrence by modelling species simultaneously with a Joint Species Distribution Model (<scp>JSDM</scp>). Methods in Ecology and Evolution, 2014, 5, 397-406.	2.2	477
83	Optimal release strategies for costâ€effective reintroductions. Journal of Applied Ecology, 2014, 51, 1107-1115.	1.9	35
84	Determining When to Change Course in Management Actions. Conservation Biology, 2014, 28, 1617-1625.	2.4	8
85	When to declare successful eradication of an invasive predator?. Animal Conservation, 2014, 17, 125-132.	1.5	47
86	Estimating population size in the presence of temporary migration using a joint analysis of telemetry and capture–recapture data. Methods in Ecology and Evolution, 2014, 5, 615-625.	2.2	28
87	Inferring extinctions from sighting records of variable reliability. Journal of Applied Ecology, 2014, 51, 251-258.	1.9	38
88	Linking Indices for Biodiversity Monitoring to Extinction Risk Theory. Conservation Biology, 2014, 28, 1575-1583.	2.4	23
89	Predicting the Effect of Urban Noise on the Active Space of Avian Vocal Signals. American Naturalist, 2013, 182, 452-464.	1.0	55
90	Incorporating Uncertainty of Management Costs in Sensitivity Analyses of Matrix Population Models. Conservation Biology, 2013, 27, 134-144.	2.4	10

#	Article	IF	CITATIONS
91	Defining vegetation age class distributions for multispecies conservation in fire-prone landscapes. Biological Conservation, 2013, 166, 111-117.	1.9	59
92	Continentalâ€Scale Governance and the Hastening of Loss of Australia's Biodiversity. Conservation Biology, 2013, 27, 1133-1135.	2.4	39
93	Profiting from pilot studies: Analysing mortality using Bayesian models with informative priors. Basic and Applied Ecology, 2013, 14, 81-89.	1.2	18
94	Inferring extinction risks from sighting records. Journal of Theoretical Biology, 2013, 338, 16-22.	0.8	25
95	A general model of detectability using species traits. Methods in Ecology and Evolution, 2013, 4, 45-52.	2.2	63
96	The influence of abundance on detectability. Oikos, 2013, 122, 717-726.	1.2	122
97	A Bayesian model of metapopulation viability, with application to an endangered amphibian. Diversity and Distributions, 2013, 19, 555-566.	1.9	61
98	Improving decisions for invasive species management: reformulation and extensions of the <scp>P</scp> anetta– <scp>L</scp> awes eradication graph. Diversity and Distributions, 2013, 19, 603-607.	1.9	16
99	Movement re-established but not restored: Inferring the effectiveness of road-crossing mitigation for a gliding mammal by monitoring use. Biological Conservation, 2013, 159, 434-441.	1.9	81
100	Population Viability Analysis. , 2013, , 210-219.		8
101	Scientific Foundations for an IUCN Red List of Ecosystems. PLoS ONE, 2013, 8, e62111.	1.1	383
102	Considering Extinction of Dependent Species during Translocation, Ex Situ Conservation, and Assisted Migration of Threatened Hosts. Conservation Biology, 2012, 26, 199-207.	2.4	55
103	Designing occupancy surveys and interpreting nonâ€detection when observations are imperfect. Diversity and Distributions, 2012, 18, 417-424.	1.9	67
104	Transparent planning for biodiversity and development in the urban fringe. Landscape and Urban Planning, 2012, 108, 140-149.	3.4	52
105	The Role of Streamflow and Land Use in Limiting Oversummer Survival of Juvenile Steelhead in California Streams. Transactions of the American Fisheries Society, 2012, 141, 585-598.	0.6	53
106	A preliminary assessment of changes in plant-dwelling insects when threatened plants are translocated. Journal of Insect Conservation, 2012, 16, 367-377.	0.8	11
107	A predictive model of avian natal dispersal distance provides prior information for investigating response to landscape change. Journal of Animal Ecology, 2012, 81, 14-23.	1.3	46
108	Integrating variability in detection probabilities when designing wildlife surveys: a case study of amphibians from south-eastern Australia. Biodiversity and Conservation, 2012, 21, 729-744.	1.2	18

#	Article	IF	CITATIONS
109	The SAFE index should not be used for prioritization. Frontiers in Ecology and the Environment, 2011, 9, 486-487.	1.9	6
110	Allocating conservation resources between areas where persistence of a species is uncertain. , 2011, 21, 844-858.		42
111	Estimating detection–effort curves for plants using search experiments. , 2011, 21, 601-607.		71
112	Designing nature reserves in the face of uncertainty. Ecology Letters, 2011, 14, 470-475.	3.0	41
113	Plant traits and extinction in urban areas: a meta-analysis of 11 cities. Global Ecology and Biogeography, 2011, 20, 509-519.	2.7	122
114	Breathing some air into the single-species vacuum: multi-species responses to environmental change. Journal of Animal Ecology, 2011, 80, 1-3.	1.3	9
115	Identifying and Managing Threatened Invertebrates through Assessment of Coextinction Risk. Conservation Biology, 2011, 25, 787-796.	2.4	43
116	Allocating biosecurity resources between preventing, detecting, and eradicating island invasions. Ecological Economics, 2011, 71, 54-62.	2.9	51
117	Current Constraints and Future Directions in Estimating Coextinction. Conservation Biology, 2010, 24, 682-690.	2.4	79
118	On Valuing Information in Adaptiveâ€Management Models. Conservation Biology, 2010, 24, 984-993.	2.4	40
119	Optimal Allocation of Conservation Resources to Species That May be Extinct. Conservation Biology, 2010, 24, 1111-1118.	2.4	25
120	Assessing ethical tradeâ€offs in ecological field studies. Journal of Applied Ecology, 2010, 47, 227-234.	1.9	43
121	Resource allocation for efficient environmental management. Ecology Letters, 2010, 13, 1280-1289.	3.0	55
122	Evidence that a Highway Reduces Apparent Survival Rates of Squirrel Gliders. Ecology and Society, 2010, 15, .	1.0	30
123	The biodiversity bank cannot be a lending bank. Conservation Letters, 2010, 3, 151-158.	2.8	128
124	Fungi and the urban environment: A review. Landscape and Urban Planning, 2010, 96, 138-145.	3.4	107
125	Phenology of epigeous macrofungi found in red gum woodlands. Fungal Biology, 2010, 114, 171-178.	1.1	5
126	How many hosts? Modelling host breadth from field samples. Methods in Ecology and Evolution, 2010, 1, 292-299.	2.2	22

#	Article	IF	CITATIONS
127	Wildlife Tunnel Enhances Population Viability. Ecology and Society, 2009, 14, .	1.0	54
128	Designing nature reserves in the face of uncertainty. Nature Precedings, 2009, , .	0.1	0
129	Using sighting records to declare eradication of an invasive species. Journal of Applied Ecology, 2009, 46, 110-117.	1.9	67
130	Robust decisions for declaring eradication of invasive species. Journal of Applied Ecology, 2009, 46, 782-786.	1.9	56
131	A conceptual framework for predicting the effects of urban environments on floras. Journal of Ecology, 2009, 97, 4-9.	1.9	346
132	Streamlining †̃search and destroy': costâ€effective surveillance for invasive species management. Ecology Letters, 2009, 12, 683-692.	3.0	185
133	A global synthesis of plant extinction rates in urban areas. Ecology Letters, 2009, 12, 1165-1173.	3.0	253
134	Effects of Toe Clipping on Survival, Recapture, and Return Rates of Jefferson Salamanders (Ambystoma) Tj ETQq(0.0 rgBT	/Oyerlock 10
135	Allometric Scaling and Bayesian Priors for Annual Survival of Birds and Mammals. American Naturalist, 2008, 172, 216-222.	1.0	51
136	Resources at the landscape scale influence possum abundance. Austral Ecology, 2008, 33, 243-252.	0.7	32
137	Costâ€Effective Suppression and Eradication of Invasive Predators. Conservation Biology, 2008, 22, 89-98.	2.4	65
138	Optimal Marking of Threatened Species to Balance Benefits of Information with Impacts of Marking. Conservation Biology, 2008, 22, 1506-1512.	2.4	8
139	Some practical suggestions for improving engagement between researchers and policyâ€makers in natural resource management. Ecological Management and Restoration, 2008, 9, 182-186.	0.7	134
140	When have we looked hard enough? A novel method for setting minimum survey effort protocols for flora surveys. Austral Ecology, 2008, 33, 986-998.	0.7	131
141	Traits of British alien and native urban plants. Journal of Ecology, 2008, 96, 853-859.	1.9	102
142	Optimal investment in conservation of species. Journal of Applied Ecology, 2008, 45, 1428-1435.	1.9	85
143	Optimal management of a flammable multi-stand forest for timber production and maintenance of nesting sites for wildlife. Forest Ecology and Management, 2008, 255, 3857-3865.	1.4	19
144	When to stop managing or surveying cryptic threatened species. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13936-13940.	3.3	161

#	Article	IF	CITATIONS
145	Alternative measures to value at risk. Journal of Risk Finance, 2008, 9, 81-88.	3.6	0
146	HOW WE VALUE THE FUTURE AFFECTS OUR DESIRE TO LEARN. Ecological Applications, 2008, 18, 1061-1069.	1.8	19
147	Subjective priors. , 2007, , 225-243.		2
148	An info-gap approach to power and sample size calculations. Environmetrics, 2007, 18, 189-203.	0.6	15
149	Active Adaptive Management for Conservation. Conservation Biology, 2007, 21, 956-963.	2.4	260
150	Info-Gap Decision Theory for Assessing the Management of Catchments for Timber Production and Urban Water Supply. Environmental Management, 2007, 39, 553-562.	1.2	40
151	Big Decisions and Sparse Data: Adapting Scientific Publishing to the Needs of Practical Conservation. Avian Conservation and Ecology, 2007, 2, .	0.3	12
152	Rejoinder: uncertainty and decision making. Ecology Letters, 2006, 9, 13-14.	3.0	1
153	LOCAL EXTINCTION OF GRASSLAND PLANTS: THE LANDSCAPE MATRIX IS MORE IMPORTANT THAN PATCH ATTRIBUTES. Ecology, 2006, 87, 3000-3006.	1.5	76
154	Accounting for uncertainty in marine reserve design. Ecology Letters, 2006, 9, 2-11.	3.0	144
155	Optimal eradication: when to stop looking for an invasive plant. Ecology Letters, 2006, 9, 759-766.	3.0	178
156	Modelling the occurrence of rainbow lorikeets (Trichoglossus haematodus) in Melbourne. Austral Ecology, 2006, 31, 240-253.	0.7	29
157	Accounting for Management Costs in Sensitivity Analyses of Matrix Population Models. Conservation Biology, 2006, 20, 893-905.	2.4	76
158	Evaluation of PVA Models of Arboreal Marsupials: Coupling Models with Long-term Monitoring Data. Biodiversity and Conservation, 2006, 15, 4079-4096.	1.2	17
159	Logic for Designing Nature Reserves for Multiple Species. American Naturalist, 2006, 167, 717-727.	1.0	35
160	The Consistency of Extinction Risk Classification Protocols. Conservation Biology, 2005, 19, 1969-1977.	2.4	52
161	A theory for optimal monitoring of marine reserves. Ecology Letters, 2005, 8, 829-837.	3.0	78
162	Plant traits and local extinctions in natural grasslands along an urban-rural gradient. Journal of Ecology, 2005, 93, 1203-1213.	1.9	159

#	Article	IF	CITATIONS
163	Profiting from prior information in Bayesian analyses of ecological data. Journal of Applied Ecology, 2005, 42, 1012-1019.	1.9	179
164	ESTIMATING AND DEALING WITH DETECTABILITY IN OCCUPANCY SURVEYS FOR FOREST OWLS AND ARBOREAL MARSUPIALS. Journal of Wildlife Management, 2005, 69, 905-917.	0.7	155
165	Inferring persistence of indigenous mammals in response to urbanisation. Animal Conservation, 2005, 8, 309-319.	1.5	70
166	Theory for Designing Nature Reserves for Single Species. American Naturalist, 2005, 165, 250-257.	1.0	85
167	The use of nest boxes in urban natural vegetation remnants by vertebrate fauna. Wildlife Research, 2005, 32, 509.	0.7	86
168	The abundance of hollow-bearing trees in urban dry sclerophyll forest and the effect of wind on hollow development. Biological Conservation, 2005, 122, 181-192.	1.9	75
169	Protocols for listing threatened species can forecast extinction. Ecology Letters, 2004, 7, 1101-1108.	3.0	38
170	The habitat hectares approach to vegetation assessment: An evaluation and suggestions for improvement. Ecological Management and Restoration, 2004, 5, 24-27.	0.7	70
171	Clarifying the effect of toe clipping on frogs with Bayesian statistics. Journal of Applied Ecology, 2004, 41, 780-786.	1.9	175
172	PRECISION AND BIAS OF METHODS FOR ESTIMATING POINT SURVEY DETECTION PROBABILITIES. , 2004, 14, 703-712.		129
173	Overcoming bias in ground-based surveys of hollow-bearing trees using double-sampling. Forest Ecology and Management, 2004, 190, 291-300.	1.4	48
174	Comparing predictions of extinction risk using models and subjective judgement. Acta Oecologica, 2004, 26, 67-74.	0.5	66
175	Eliciting and integrating expert knowledge for wildlife habitat modelling. Ecological Modelling, 2003, 165, 251-264.	1.2	96
176	Reliability of Relative Predictions in Population Viability Analysis. Conservation Biology, 2003, 17, 982-989.	2.4	120
177	The Use of Bayesian Model Averaging to Better Represent Uncertainty in Ecological Models. Conservation Biology, 2003, 17, 1579-1590.	2.4	224
178	Congruence between natural and human forest disturbance: a case study from Australian montane ash forests. Forest Ecology and Management, 2002, 155, 319-335.	1.4	111
179	The Focalâ€ 5 pecies Approach and Landscape Restoration: a Critique. Conservation Biology, 2002, 16, 338-345.	2.4	256
180	How accurate are population models? Lessons from landscape-scale tests in a fragmented system. Ecology Letters, 2002, 6, 41-47.	3.0	89

#	Article	IF	CITATIONS
181	Assessing spatial PVA models of arboreal marsupials using significance tests and Bayesian statistics. Biological Conservation, 2001, 98, 191-200.	1.9	22
182	The spatial distribution of non-native plant invaders in a pine–eucalypt landscape mosaic in south-eastern Australia. Biological Conservation, 2001, 102, 77-87.	1.9	39
183	Theoretical fire-interval distributions. International Journal of Wildland Fire, 2001, 10, 73.	1.0	82
184	A Method for Setting the Size of Plant Conservation Target Areas. Conservation Biology, 2001, 15, 603-616.	2.4	66
185	Testing the Accuracy of Population Viability Analysis. Conservation Biology, 2001, 15, 1030-1038.	2.4	62
186	A landscape-scale test of the predictive ability of a spatially explicit model for population viability analysis. Journal of Applied Ecology, 2001, 38, 36-48.	1.9	23
187	Using stochastic dynamic programming to determine optimal fire management for Banksia ornata. Journal of Applied Ecology, 2001, 38, 585-592.	1.9	70
188	Expected minimum population size as a measure of threat. Animal Conservation, 2001, 4, 351-355.	1.5	139
189	A simple landscape-scale test of a spatially explicit population model: patch occupancy in fragmented south-eastern Australian forests. Oikos, 2001, 92, 445-458.	1.2	17
190	Identifying effects of toe clipping on anuran return rates: the importance of statistical power. Amphibia - Reptilia, 2001, 22, 275-289.	0.1	53
191	Population Viability Analysis. , 2001, , 831-843.		12
192	TESTING SPATIAL PVA MODELS OF AUSTRALIAN TREECREEPERS (AVES: CLIMACTERIDAE) IN FRAGMENTED FOREST. , 2000, 10, 1722-1731.		29
193	Inferring Threat from Scientific Collections: Power Tests and an Application to Western Australian Acacia Species. , 2000, , 7-26.		32
194	Swapping space for time and unfair tests of ecological models. Austral Ecology, 2000, 25, 327-331.	0.7	13
195	A method for validating stochastic models of population viability: a case study of the mountain pygmy-possum (Burramys parvus). Journal of Animal Ecology, 2000, 69, 599-607.	1.3	36
196	Factors affecting the presence of the cool temperate rain forest tree myrtle beech (Nothofagus) Tj ETQq0 0 0 rg distribution patterns. Journal of Biogeography, 2000, 27, 1001-1009.	3T /Overlc 1.4	ock 10 Tf 50 1 28
197	Spatially-correlated extinction in a metapopulation model of Leadbeater's Possum. , 2000, 9, 47-63.		46
198	HABITAT FRAGMENTATION, LANDSCAPE CONTEXT, AND MAMMALIAN ASSEMBLAGES IN SOUTHEASTERN AUSTRALIA. Journal of Mammalogy, 2000, 81, 787-797.	0.6	50

#	Article	IF	CITATIONS
199	INCORPORATING METAPOPULATION DYNAMICS OF GREATER GLIDERS INTO RESERVE DESIGN IN DISTURBED LANDSCAPES. Ecology, 1999, 80, 651-667.	1.5	52
200	What influences the structure of frog assemblages at forest streams?. Austral Ecology, 1999, 24, 495-502.	0.7	66
201	Conservation of the greater glider (Petauroides volans) in remnant native vegetation within exotic plantation forest. Animal Conservation, 1999, 2, 203-209.	1.5	6
202	Factors affecting stand structure in forests – are there climatic and topographic determinants?. Forest Ecology and Management, 1999, 123, 55-63.	1.4	36
203	Fire regimes in mountain ash forest: evidence from forest age structure, extinction models and wildlife habitat. Forest Ecology and Management, 1999, 124, 193-203.	1.4	132
204	Effects of competition on natal dispersal distance. Ecological Modelling, 1999, 114, 305-310.	1.2	19
205	The conservation of arboreal marsupials in the montane ash forests of the central highlands of Victoria, south-eastern Australia. VIII. Landscape analysis of the occurrence of arboreal marsupials. Biological Conservation, 1999, 89, 83-92.	1.9	64
206	Uncertainty in assessing the viability of the Powerful Owl Ninox strenua in Victoria, Australia. Pacific Conservation Biology, 1999, 5, 144.	0.5	14
207	Multi-aged mountain ash forest, wildlife conservation and timber harvesting. Forest Ecology and Management, 1998, 104, 43-56.	1.4	70
208	Population density and movement data for predicting mating systems of arboreal marsupials. Ecological Modelling, 1998, 109, 193-202.	1.2	11
209	Identifying declining and threatened species with museum data. Biological Conservation, 1998, 83, 9-17.	1.9	110
210	Intervals between prescribed fires in Australia: what intrinsic variation should apply?. Biological Conservation, 1998, 85, 161-169.	1.9	81
211	COMPETITION AND DISPERSAL FROM MULTIPLE NESTS. Ecology, 1997, 78, 873-883.	1.5	42
212	The Allee effect, finding mates and theoretical models. Ecological Modelling, 1997, 103, 99-102.	1.2	204
213	Extinction Debts and Risks Faced by Abundant Species. Deudas de Extincion y Riesgos Enfrentados por un Numero Abundante de Especies. Conservation Biology, 1997, 11, 221-226.	2.4	50
214	Extinction dynamics of the helmeted honeyeater: effects of demography, stochasticity, inbreeding and spatial structure. Ecological Modelling, 1996, 85, 151-163.	1.2	54
215	Logistic sensitivity and bounds for extinction risks. Ecological Modelling, 1996, 86, 297-303.	1.2	62
216	Predator Interference across Trophic Chains. Ecology, 1995, 76, 1310-1319.	1.5	22

#	Article	IF	CITATIONS
217	Coping with uncertainty in forest wildlife planning. Forest Ecology and Management, 1995, 74, 23-36.	1.4	49
218	Sensitivity analysis for models of population viability. Biological Conservation, 1995, 73, 93-100.	1.9	199
219	Linking landscape data with population viability analysis: Management options for the helmeted honeyeater Lichenostomus melanops cassidix. Biological Conservation, 1995, 73, 169-176.	1.9	18
220	Sensitivity analysis for models of population viability. , 1995, 73, 93-93.		37
221	Linking landscape data with population viability analysis: management options for the helmeted honeyeater Lichenostomus melanops cassidix. Biological Conservation, 1995, 73, 169-176.	1.9	117
222	Use and abuse of wildlife models for determining habitat requirements of forest fauna. Australian Forestry, 1994, 57, 82-85.	0.3	9
223	Wildlife planning using FORPLAN: a review and examples from Victorian forests. Australian Forestry, 1994, 57, 131-140.	0.3	11
224	The importance of demographic uncertainty: An example from the helmeted honeyeater Lichenostomus melanops cassidix. Biological Conservation, 1994, 67, 135-142.	1.9	62
225	Analysing averages and frequencies. , 0, , 63-93.		0
226	How good are the models?. , 0, , 94-118.		1
227	Mark-recapture analysis. , 0, , 197-206.		0
228	Effects of marking frogs. , 0, , 207-216.		0
229	Critiques of statistical methods. , 0, , 30-62.		1
230	A tutorial for running WinBUGS. , 0, , 249-254.		0
231	Using models to compare the ecology of cities. , 0, , 112-126.		1