Herman F Staats

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7678646/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cardiolipin Polyspecific Autoreactivity in Two Broadly Neutralizing HIV-1 Antibodies. Science, 2005, 308, 1906-1908.	12.6	704
2	Mast cell–derived tumor necrosis factor induces hypertrophy of draining lymph nodes during infection. Nature Immunology, 2003, 4, 1199-1205.	14.5	290
3	Mucosal immunity to infection with implications for vaccine development. Current Opinion in Immunology, 1994, 6, 572-583.	5.5	194
4	Mast cell activators: a new class of highly effective vaccine adjuvants. Nature Medicine, 2008, 14, 536-541.	30.7	192
5	Mast cell–derived particles deliver peripheral signals to remote lymph nodes. Journal of Experimental Medicine, 2009, 206, 2455-2467.	8.5	151
6	Helper Th1 and Th2 cell responses following mucosal or systemic immunization with cholera toxin. Vaccine, 1994, 12, 903-911.	3.8	117
7	Novel dry powder preparations of whole inactivated influenza virus for nasal vaccination. AAPS PharmSciTech, 2007, 8, 2-10.	3.3	114
8	Mast Cells Augment Adaptive Immunity by Orchestrating Dendritic Cell Trafficking through Infected Tissues. Cell Host and Microbe, 2009, 6, 331-342.	11.0	113
9	Intranasal Immunization Is Superior to Vaginal, Gastric, or Rectal Immunization for the Induction of Systemic and Mucosal Anti-HIV Antibody Responses. AIDS Research and Human Retroviruses, 1997, 13, 945-952.	1.1	102
10	Intranasal mRNA nanoparticle vaccination induces prophylactic and therapeutic anti-tumor immunity. Scientific Reports, 2014, 4, 5128.	3.3	94
11	Cytokines as Adjuvants for the Induction of Anti-Human Immunodeficiency Virus Peptide Immunoglobulin G (IgC) and IgA Antibodies in Serum and Mucosal Secretions after Nasal Immunization. Journal of Virology, 2002, 76, 517-524.	3.4	91
12	Cytokine Requirements for Induction of Systemic and Mucosal CTL After Nasal Immunization. Journal of Immunology, 2001, 167, 5386-5394.	0.8	90
13	Mucosal and systemic adjuvant activity of alphavirus replicon particles. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3722-3727.	7.1	90
14	Synthetic mast-cell granules as adjuvants to promote and polarize immunity in lymph nodes. Nature Materials, 2012, 11, 250-257.	27.5	89
15	Increased peanut-specific IgA levels in saliva correlate with food challenge outcomes after peanut sublingual immunotherapy. Journal of Allergy and Clinical Immunology, 2012, 129, 1159-1162.	2.9	89
16	Human Nasopharyngeal-Associated Lymphoreticular Tissues. American Journal of Pathology, 2000, 157, 2023-2035.	3.8	85
17	Stable Dry Powder Formulation for Nasal Delivery of Anthrax Vaccine. Journal of Pharmaceutical Sciences, 2012, 101, 31-47.	3.3	82
18	MRGPR-mediated activation of local mast cells clears cutaneous bacterial infection and protects against reinfection. Science Advances, 2019, 5, eaav0216.	10.3	78

#	Article	IF	CITATIONS
19	Detection of Mucosal Antibodies in HIV Type 1-Infected Individuals. AIDS Research and Human Retroviruses, 2002, 18, 1291-1300.	1.1	72
20	The mast cell activator compound 48/80 is safe and effective when used as an adjuvant for intradermal immunization with Bacillus anthracis protective antigen. Vaccine, 2009, 27, 3544-3552.	3.8	72
21	Prolonged CD4+Cell/Virus Load Discordance during Treatment with Protease Inhibitor–Based Highly Active Antiretroviral Therapy: Immune Response and Viral Control. Journal of Infectious Diseases, 2003, 187, 1027-1037.	4.0	71
22	A comparative evaluation of nasal and parenteral vaccine adjuvants to elicit systemic and mucosal HIV-1 peptide-specific humoral immune responses in cynomolgus macaques. Vaccine, 2004, 22, 3774-3788.	3.8	58
23	Intranasal Immunization with Cytotoxic T-Lymphocyte Epitope Peptide and Mucosal Adjuvant Cholera Toxin: Selective Augmentation of Peptide-Presenting Dendritic Cells in Nasal Mucosa-Associated Lymphoid Tissue. Infection and Immunity, 1998, 66, 5876-5881.	2.2	58
24	Perivascular dendritic cells elicit anaphylaxis by relaying allergens to mast cells via microvesicles. Science, 2018, 362, .	12.6	56
25	In Vitro and In Vivo Characterization of Anthrax Anti-Protective Antigen and Anti-Lethal Factor Monoclonal Antibodies after Passive Transfer in a Mouse Lethal Toxin Challenge Model To Define Correlates of Immunity. Infection and Immunity, 2007, 75, 5443-5452.	2.2	55
26	Cytokines: The Future of Intranasal Vaccine Adjuvants. Clinical and Developmental Immunology, 2011, 2011, 1-17.	3.3	52
27	Salmonella Typhimurium Impedes Innate Immunity with a Mast-Cell-Suppressing Protein Tyrosine Phosphatase, SptP. Immunity, 2013, 39, 1108-1120.	14.3	52
28	Scarcity or Absence of Humoral Immune Responses in the Plasma and Cervicovaginal Lavage Fluids of Heavily HIV-1-Exposed But Persistently Seronegative Women. AIDS Research and Human Retroviruses, 2011, 27, 469-486.	1.1	46
29	A mastoparan-derived peptide has broad-spectrum antiviral activity against enveloped viruses. Peptides, 2013, 48, 96-105.	2.4	46
30	Mucosal Immunization of Lactating Female Rhesus Monkeys with a Transmitted/Founder HIV-1 Envelope Induces Strong Env-Specific IgA Antibody Responses in Breast Milk. Journal of Virology, 2013, 87, 6986-6999.	3.4	38
31	Bridging Vaccine-Induced HIV-1 Neutralizing and Effector Antibody Responses in Rabbit and Rhesus Macaque Animal Models. Journal of Virology, 2019, 93, .	3.4	37
32	Mucosal Targeting of a BoNT/A Subunit Vaccine Adjuvanted with a Mast Cell Activator Enhances Induction of BoNT/A Neutralizing Antibodies in Rabbits. PLoS ONE, 2011, 6, e16532.	2.5	36
33	Effective induction of protective systemic immunity with nasally administered vaccines adjuvanted with IL-1. Vaccine, 2010, 28, 6901-6914.	3.8	34
34	Alphavirus replicon particles acting as adjuvants promote CD8+ T cell responses to co-delivered antigen. Vaccine, 2008, 26, 4267-4275.	3.8	33
35	A Novel Neurotoxoid Vaccine Prevents Mucosal Botulism. Journal of Immunology, 2005, 174, 2190-2195.	0.8	32
36	An Entirely Cell-Based System to Generate Single-Chain Antibodies against Cell Surface Receptors. Journal of Molecular Biology, 2008, 379, 261-272.	4.2	30

#	Article	IF	CITATIONS
37	A comparison of non-toxin vaccine adjuvants for their ability to enhance the immunogenicity of nasally-administered anthrax recombinant protective antigen. Vaccine, 2013, 31, 1480-1489.	3.8	27
38	Mucosal Vaccine Targeting Improves Onset of Mucosal and Systemic Immunity to Botulinum Neurotoxin A. Journal of Immunology, 2006, 177, 5524-5532.	0.8	26
39	Nonmucosal Alphavirus Vaccination Stimulates a Mucosal Inductive Environment in the Peripheral Draining Lymph Node. Journal of Immunology, 2008, 181, 574-585.	0.8	25
40	Maximal Adjuvant Activity of Nasally Delivered IL-1α Requires Adjuvant-Responsive CD11c+ Cells and Does Not Correlate with Adjuvant-Induced In Vivo Cytokine Production. Journal of Immunology, 2012, 188, 2834-2846.	0.8	23
41	Combined HIV-1 Envelope Systemic and Mucosal Immunization of Lactating Rhesus Monkeys Induces a Robust Immunoglobulin A Isotype B Cell Response in Breast Milk. Journal of Virology, 2016, 90, 4951-4965.	3.4	23
42	Mast cell activators as novel immune regulators. Current Opinion in Pharmacology, 2018, 41, 89-95.	3.5	23
43	Oral immunogenicity of the plant proteinase bromelain. International Immunopharmacology, 2006, 6, 2038-2046.	3.8	22
44	Effect of particulate adjuvant on the anthrax protective antigen dose required for effective nasal vaccination. Vaccine, 2015, 33, 3609-3613.	3.8	22
45	Effective Antibody Therapy in Herpes Simplex Virus Ocular Infection. Intervirology, 1990, 31, 159-165.	2.8	21
46	The contribution of type I interferon signaling to immunity induced by alphavirus replicon vaccines. Vaccine, 2008, 26, 4998-5003.	3.8	21
47	Immunization with the <i>Haemophilus ducreyi</i> Hemoglobin Receptor HgbA with Adjuvant Monophosphoryl Lipid A Protects Swine from a Homologous but Not a Heterologous Challenge. Infection and Immunity, 2010, 78, 3763-3772.	2.2	21
48	Novel mucosal adjuvant, mastoparan-7, improves cocaine vaccine efficacy. Npj Vaccines, 2020, 5, 12.	6.0	21
49	Generation of Mucosal Anti-Human Immunodeficiency Virus Type 1 T-Cell Responses by Recombinant Mycobacterium smegmatisâ–¿. Vaccine Journal, 2006, 13, 1204-1211.	3.1	20
50	Fecal IgA, Antigen Absorption, and Gut Microbiome Composition Are Associated With Food Antigen Sensitization in Genetically Susceptible Mice. Frontiers in Immunology, 2020, 11, 599637.	4.8	20
51	Increased immunogenicity of HIV envelope subunit complexed with α2-macroglobulin when combined with monophosphoryl lipid A and GM-CSF. Vaccine, 2002, 20, 2396-2403.	3.8	18
52	Evaluation of vaccine-induced antibody responses: Impact of new technologies. Vaccine, 2013, 31, 2756-2761.	3.8	18
53	The V3 Domain of SIVmac251 gp120 Contains a Linear Neutralizing Epitope. Virology, 1996, 224, 415-426.	2.4	17
54	Gender Differences in Human Immunodeficiency Virus Type 1-Specific CD8 Responses in the Reproductive Tract and Colon following Nasal Peptide Priming and Modified Vaccinia Virus Ankara Boosting. Journal of Virology, 2004, 78, 13163-13172.	3.4	17

#	Article	IF	CITATIONS
55	Capric Acid and Hydroxypropylmethylcellulose Increase the Immunogenicity of Nasally Administered Peptide Vaccines. AIDS Research and Human Retroviruses, 2006, 22, 558-568.	1.1	16
56	Application of Basic Principles of Mucosal Immunity to Vaccine Development. , 1996, , 17-39.		16
57	Dry Powder Vaccines for Mucosal Administration: Critical Factors in Manufacture and Delivery. Current Topics in Microbiology and Immunology, 2011, 354, 121-156.	1.1	15
58	A mast cell degranulation screening assay for the identification of novel mast cell activating agents. MedChemComm, 2013, 4, 88-94.	3.4	15
59	Non-replicating mucosal and systemic vaccines: quantitative and qualitative differences in the Ag-specific CD8+ T cell population in different tissues. Vaccine, 2004, 22, 1390-1394.	3.8	14
60	Mucosal vaccine development for botulinum intoxication. Expert Review of Vaccines, 2007, 6, 35-45.	4.4	13
61	Genetic determinants of immune-response to a polysaccharide vaccine for typhoid. The HUGO Journal, 2009, 3, 17-30.	4.1	13
62	Immunization with the Haemophilus ducreyi trimeric autotransporter adhesin DsrA with alum, CpG or imiquimod generates a persistent humoral immune response that recognizes the bacterial surface. Vaccine, 2016, 34, 1193-1200.	3.8	12
63	Nasal peanut+ CpG immunotherapy enhances peanutâ€specific <scp>IFN</scp> â€Î³ in Th2 cells and <scp>IL</scp> â€10 in nonâ€Th2 cells in mice. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 2220-2223.	5.7	12
64	Serological response following re-vaccination with Salmonella typhi Vi-capsular polysaccharide vaccines in healthy adult travellers. Vaccine, 2015, 33, 4141-4145.	3.8	11
65	Development of a Bead Immunoassay To Measure Vi Polysaccharide-Specific Serum IgG after Vaccination with the <i>Salmonella enterica</i> Serovar Typhi Vi Polysaccharide. Vaccine Journal, 2010, 17, 412-419.	3.1	10
66	Adjuvanted Immunotherapy Approaches for Peanut Allergy. Frontiers in Immunology, 2018, 9, 2156.	4.8	10
67	Chaperoning vaccines. Nature Materials, 2010, 9, 537-538.	27.5	9
68	Genomic correlates of variability in immune response to an oral cholera vaccine. European Journal of Human Genetics, 2013, 21, 1000-1006.	2.8	9
69	Optimized Mucosal Modified Vaccinia Virus Ankara Prime/Soluble gp120 Boost HIV Vaccination Regimen Induces Antibody Responses Similar to Those of an Intramuscular Regimen. Journal of Virology, 2019, 93, .	3.4	9
70	Nasal Immunization With Small Molecule Mast Cell Activators Enhance Immunity to Co-Administered Subunit Immunogens. Frontiers in Immunology, 2021, 12, 730346.	4.8	9
71	Adenovirus F protein as a delivery vehicle for botulinum B. BMC Immunology, 2010, 11, 36.	2.2	7
72	Assessing the satisfaction and burden within an academic animal care and use program. FASEB Journal, 2017, 31, 3913-3921.	0.5	7

#	Article	IF	CITATIONS
73	Identification of Novel Mast Cell Activators Using Cell-Based High-Throughput Screening. SLAS Discovery, 2019, 24, 628-640.	2.7	7
74	Highly-loaded protein nanocarriers prepared by Flash NanoPrecipitation with hydrophobic ion pairing. International Journal of Pharmaceutics, 2021, 601, 120397.	5.2	7
75	Identification of recombinant antibodies against multiple distinct toll-like receptors by homolog mining a single immune scFv phage library. Journal of Immunological Methods, 2009, 340, 144-153.	1.4	6
76	Effect of endotoxin and alum adjuvant vaccine on peanut allergy. Journal of Allergy and Clinical Immunology, 2018, 141, 791-794.e8.	2.9	6
77	Innate Immunity-Based Mucosal Modulators and Adjuvants. , 2020, , 167-183.		5
78	Scale of Health: Indices of Safety and Efficacy in the Evolving Environment of Large Biological Datasets. Pharmaceutical Research, 2014, 31, 2256-2265.	3.5	4
79	Modified Vaccinia Ankara Virus Vaccination Provides Long-Term Protection against Nasal Rabbitpox Virus Challenge. Vaccine Journal, 2016, 23, 648-651.	3.1	4
80	Vaccines for Selective Induction of Th1- and Th2-Cell Responses and Their Roles in Mucosal Immunity. , 1996, , 461-475.		4
81	Intranasal mRNA nanoparticle vaccination induces prophylactic and therapeutic anti-tumor immunity. Journal of Controlled Release, 2015, 213, e66-e67.	9.9	2
82	Intranasal Immunization and Milk Collection in Studies of Maternal Immunization in New Zealand White Rabbits (Oryctolagus cuniculus). Journal of Visualized Experiments, 2021, , .	0.3	2
83	Mucosal Immunity in HIV Infection. , 1996, , 387-416.		2
84	Effect of bismuth salts on systemic and mucosal immune responses to orally administered cholera toxin. Immunopharmacology, 1995, 31, 31-41.	2.0	1
85	Nasal Dry Powder Vaccine Delivery Technology. , 2014, , 717-726.		1
86	Mast Cells for the Control of Mucosal Immunity. , 2020, , 213-228.		1
87	Which comes first: the antigen or the adjuvant?. Journal of Clinical Investigation, 2014, 124, 2364-2365.	8.2	1
88	HIV Vaccine Development at Duke University Medical Center. Immunologic Research, 2000, 22, 263-270.	2.9	0
89	HIV Mucosal Vaccines. , 2002, , 165-190.		0