Riccardo Spezia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/76785/publications.pdf

Version: 2024-02-01

129 papers 3,239 citations

30 h-index 206112 48 g-index

154 all docs

154 docs citations

154 times ranked 2867 citing authors

#	Article	IF	CITATIONS
1	Revised Ionic Radii of Lanthanoid(III) Ions in Aqueous Solution. Inorganic Chemistry, 2011, 50, 4572-4579.	4.0	212
2	Singlet oxygen from cation driven superoxide disproportionation and consequences for aprotic metal–O ₂ batteries. Energy and Environmental Science, 2019, 12, 2559-2568.	30.8	122
3	A first-principles method to model perturbed electronic wavefunctions: the effect of an external homogeneous electric field. Chemical Physics Letters, 2001, 344, 374-380.	2.6	120
4	Hydration of Lanthanoids(III) and Actinoids(III): An Experimental/Theoretical Saga. Chemistry - A European Journal, 2012, 18, 11162-11178.	3.3	114
5	Building a polarizable pair interaction potential for lanthanoids(III) in liquid water: A molecular dynamics study of structure and dynamics of the whole series. Journal of Chemical Physics, 2009, 130, 104501.	3.0	88
6	A Dynamic Model to Explain Hydration Behaviour along the Lanthanide Series. ChemPhysChem, 2008, 9, 693-696.	2.1	86
7	Hydration Properties and Ionic Radii of Actinide(III) Ions in Aqueous Solution. Inorganic Chemistry, 2013, 52, 10318-10324.	4.0	80
8	UO ₂ ²⁺ Uptake by Proteins: Understanding the Binding Features of the Super Uranyl Binding Protein and Design of a Protein with Higher Affinity. Journal of the American Chemical Society, 2014, 136, 17484-17494.	13.7	74
9	Pair interaction potentials with explicit polarization for molecular dynamics simulations of La3+ in bulk water. Journal of Chemical Physics, 2007, 127, 034503.	3.0	67
10	Protonated Urea Collision-Induced Dissociation. Comparison of Experiments and Chemical Dynamics Simulations. Journal of Physical Chemistry A, 2009, 113, 13853-13862.	2.5	60
11	Hydration of Lanthanide Chloride Salts: A Quantum Chemical and Classical Molecular Dynamics Simulation Study. Journal of Physical Chemistry B, 2010, 114, 15590-15597.	2.6	60
12	Gas phase vibrational spectroscopy of the protonated water pentamer: the role of isomers and nuclear quantum effects. Physical Chemistry Chemical Physics, 2016, 18, 26743-26754.	2.8	53
13	Extension of the perturbed matrix method: application to a water molecule. Chemical Physics Letters, 2002, 365, 450-456.	2.6	51
14	Echinenone vibrational properties: From solvents to the orange carotenoid protein. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 1044-1054.	1.0	48
15	A Coupled Car-Parrinello Molecular Dynamics and EXAFS Data Analysis Investigation of Aqueous Co2+. Journal of Physical Chemistry A, 2006, 110, 13081-13088.	2.5	46
16	Environmental effects on vibrational properties of carotenoids: experiments and calculations on peridinin. Physical Chemistry Chemical Physics, 2011, 13, 20954.	2.8	45
17	Dynamical Friction Effects on the Photoisomerization of a Model Protonated Schiff Base in Solution. Journal of Physical Chemistry A, 2011, 115, 3720-3735.	2.5	43
18	Co2+Binding Cysteine and Selenocysteine:Â A DFT Study. Journal of Physical Chemistry A, 2006, 110, 9727-9735.	2.5	41

#	Article	IF	CITATIONS
19	Conical intersections in solution: non-equilibrium versus equilibrium solvation. Molecular Physics, 2006, 104, 903-914.	1.7	40
20	Electronic structure and bonding of lanthanoid(iii) carbonates. Physical Chemistry Chemical Physics, 2012, 14, 14822.	2.8	38
21	The Effect of Protein Conformational Flexibility on the Electronic Properties of a Chromophore. Biophysical Journal, 2003, 84, 2805-2813.	0.5	36
22	Density functional theory based molecular dynamics study of hydration and electronic properties of aqueous La3+. Journal of Chemical Physics, 2010, 133, 044509.	3.0	36
23	Conformational fluctuations and electronic properties in myoglobin. Journal of Computational Chemistry, 2004, 25, 974-984.	3.3	35
24	The Unique Photophysical Properties of the Peridinin-Chlorophyll-a-Protein. Current Protein and Peptide Science, 2014, 15, 332-350.	1.4	35
25	Collision-induced dissociation pathways of protonated Gly2NH2 and Gly3NH2 in the short time-scale limit by chemical dynamics and ion spectroscopy. International Journal of Mass Spectrometry, 2015, 388, 40-52.	1.5	34
26	On the gas phase fragmentation of protonated uracil: a statistical perspective. Physical Chemistry Chemical Physics, 2016, 18, 14980-14990.	2.8	34
27	Model Simulations of the Thermal Dissociation of the TIK(H+)2 Tripeptide: Mechanisms and Kinetic Parameters. Journal of Physical Chemistry A, 2016, 120, 8211-8227.	2.5	34
28	Lanthanoids(III) and actinoids(III) in water: Diffusion coefficients and hydration enthalpies from polarizable molecular dynamics simulations. Pure and Applied Chemistry, 2012, 85, 237-246.	1.9	33
29	Degradation of LiTfO/TEGME and LiTfO/DME Electrolytes in Li-O ₂ Batteries. Journal of the Electrochemical Society, 2018, 165, A118-A125.	2.9	33
30	Galactose-6-Sulfate collision induced dissociation using QM+MM chemical dynamics simulations and ESI-MS/MS experiments. International Journal of Mass Spectrometry, 2014, 358, 25-35.	1.5	31
31	Elucidating collision induced dissociation products and reaction mechanisms of protonated uracil by coupling chemical dynamics simulations with tandem mass spectrometry experiments. Journal of Mass Spectrometry, 2015, 50, 1340-1351.	1.6	31
32	Molecular dynamics simulations of the Ag+ or Na+ cation with an excess electron in bulk water. Journal of Chemical Physics, 2004, 120, 5261-5268.	3.0	30
33	Gas-phase collision induced dissociation mechanisms of peptides: Theoretical and experimental study of N-formylalanylamide fragmentation. International Journal of Mass Spectrometry, 2013, 335, 33-44.	1.5	30
34	On the development of polarizable and Lennard-Jones force fields to study hydration structure and dynamics of actinide(III) ions based on effective ionic radii. Journal of Chemical Physics, 2017, 147, 161707.	3.0	30
35	Role of Chemical Dynamics Simulations in Mass Spectrometry Studies of Collision-Induced Dissociation and Collisions of Biological Ions with Organic Surfaces. Journal of the American Society for Mass Spectrometry, 2020, 31, 2-24.	2.8	30
36	Molecular Dynamics Simulations of a Silver Atom in Water: Evidence for a Dipolar Excitonic State. Physical Review Letters, 2003, 91, 208304.	7.8	28

#	Article	IF	CITATIONS
37	Polarizable interaction potential for molecular dynamics simulations of actinoids(III) in liquid water. Journal of Chemical Physics, 2011, 135, 044503.	3.0	28
38	Unravelling the Hydration Structure of ThX $<$ sub $>$ 4 $<$ /sub $>$ (X = Br, Cl) Water Solutions by Molecular Dynamics Simulations and X-ray Absorption Spectroscopy. Journal of Physical Chemistry B, 2012, 116, 6465-6475.	2.6	28
39	Toward a DFT-based molecular dynamics description of Co(ii) binding in sulfur-rich peptides. Physical Chemistry Chemical Physics, 2006, 8, 2040.	2.8	27
40	Collision-induced dissociation mechanisms of protonated penta- and octa-glycine as revealed by chemical dynamics simulations. International Journal of Mass Spectrometry, 2015, 392, 125-138.	1.5	27
41	Unimolecular dissociation of peptides: statistical vs. non-statistical fragmentation mechanisms and time scales. Faraday Discussions, 2016, 195, 599-618.	3.2	27
42	Collision induced dissociation of protonated urea with N2: Effects of rotational energy on reactivity and energy transfer via chemical dynamics simulations. International Journal of Mass Spectrometry, 2011, 308, 289-298.	1.5	26
43	Unimolecular Fragmentation Induced By Low-Energy Collision: Statistically or Dynamically Driven?. Journal of Physical Chemistry A, 2014, 118, 10882-10893.	2.5	26
44	Collision induced dissociation of doubly-charged ions: Coulomb explosion vs. neutral loss in [Ca(urea)]2+ gas phase unimolecular reactivity via chemical dynamics simulations. Physical Chemistry Chemical Physics, 2012, 14, 11724.	2.8	25
45	A non-comparative assessment of tolerability and efficacy of duloxetine in the treatment of depressed patients with Parkinson's disease. Expert Opinion on Pharmacotherapy, 2012, 13, 2269-2280.	1.8	25
46	Structures and fragmentations of Cobalt(II)–cysteine complexes in the gas phase. Journal of Mass Spectrometry, 2007, 42, 517-526.	1.6	24
47	Fermi Resonance as a Tool for Probing Peridinin Environment. Journal of Physical Chemistry B, 2014, 118, 5873-5881.	2.6	24
48	SYNTHESIS OF FORMAMIDE AND RELATED ORGANIC SPECIES IN THE INTERSTELLAR MEDIUM VIA CHEMICAL DYNAMICS SIMULATIONS. Astrophysical Journal, 2016, 826, 107.	4.5	24
49	Temperature dependence of hydrated La3+ properties in liquid water, a molecular dynamics simulations study. Chemical Physics Letters, 2007, 448, 41-45.	2.6	23
50	1,2â€Dimethoxyethane Degradation Thermodynamics in Liâ^'O ₂ Redox Environments. Chemistry - A European Journal, 2016, 22, 17188-17203.	3.3	23
51	What first principles molecular dynamics can tell us about EXAFS spectroscopy of radioactive heavy metal cations in water. Radiochimica Acta, 2009, 97, 339-346.	1.2	22
52	Stability and Instability of the Isoelectronic UO22+and PaO2+Actinyl Oxo-Cations in Aqueous Solution from Density Functional Theory Based Molecular Dynamics. Journal of Physical Chemistry B, 2011, 115, 3560-3570.	2.6	22
53	Theoretical Methods for Vibrational Spectroscopy and Collision Induced Dissociation in the Gas Phase. Topics in Current Chemistry, 2014, 364, 99-151.	4.0	22
54	Uranyl–Peroxide Nanocapsules in Aqueous Solution: Force Field Development and First Applications. Journal of Physical Chemistry C, 2014, 118, 24730-24740.	3.1	22

#	Article	IF	Citations
55	Post-Transition State Dynamics in Gas Phase Reactivity: Importance of Bifurcations and Rotational Activation. Journal of Chemical Theory and Computation, 2016, 12, 974-982.	5.3	22
56	Characterization of Protonated Model Disaccharides from Tandem Mass Spectrometry and Chemical Dynamics Simulations. ChemPhysChem, 2017, 18, 2812-2823.	2.1	22
57	A DFT Study of the Low-Lying Singlet Excited States of the All-Trans Peridinin in vacuo. Journal of Physical Chemistry A, 2004, 108, 6763-6770.	2.5	21
58	Hydration properties of Cm(iii) and Th(iv) combining coordination free energy profiles with electronic structure analysis. Physical Chemistry Chemical Physics, 2014, 16, 5824.	2.8	21
59	The formation of urea in space. II. MP2 versus PM6 dynamics in determining bimolecular reaction products. Theoretical Chemistry Accounts, 2019, 138, 1.	1.4	21
60	Solvation of Co(III)-Cysteinato Complexes in Water: A DFT-based Molecular Dynamics Study. Journal of Physical Chemistry B, 2008, 112, 6490-6499.	2.6	20
61	Time-resolved step scan FTIR spectroscopy and DFT investigation on triplet formation in peridinin–chlorophyll- <i>a</i> ase"protein from Amphidinium carterae at low temperature. Spectroscopy, 2008, 22, 235-250.	0.8	20
62	Mn2+-, Fe2+-, Co2+-, Ni2+-, Cu2+-, and Zn2+-Binding Chalcogenâ ⁻ Chalcogen Bridges: A Compared MP2 and B3LYP Study. Journal of Physical Chemistry A, 2009, 113, 7878-7887.	2.5	20
63	<scp>ICysteine Modified by S-Sulfation: Consequence on Fragmentation Processes Elucidated by Tandem Mass Spectrometry and Chemical Dynamics Simulations. Journal of Physical Chemistry A, 2019, 123, 3685-3696.</scp>	2.5	20
64	Fermi resonance in CO2: Mode assignment and quantum nuclear effects from first principles molecular dynamics. Journal of Chemical Physics, 2017, 146, 134102.	3.0	19
65	How Does Ce ^{III} Nitrate Dissolve in a Protic Ionic Liquid? A Combined Molecular Dynamics and EXAFS Study. Chemistry - A European Journal, 2017, 23, 8424-8433.	3.3	19
66	Gas Phase Synthesis of Protonated Glycine by Chemical Dynamics Simulations. Journal of Physical Chemistry A, 2018, 122, 869-877.	2.5	19
67	An interdisciplinary approach toÂinvestigate theÂimpact ofÂcobalt inÂaÂhuman keratinocyte cell line. Biochimie, 2006, 88, 1619-1629.	2.6	18
68	Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20170035.	3.4	18
69	Unimolecular Fragmentation of Deprotonated Diproline [Pro ₂ -H] ^{â^'} Studied by Chemical Dynamics Simulations and IRMPD Spectroscopy. Journal of Physical Chemistry A, 2018, 122, 2612-2625.	2.5	18
70	Chemical dynamics simulations of CID of peptide ions: comparisons between TIK(H ⁺) ₂ and TLK(H ⁺) ₂ fragmentation dynamics, and with thermal simulations. Physical Chemistry Chemical Physics, 2018, 20, 3614-3629.	2.8	18
71	An Ab Initio Molecular Dynamics Study on the Hydrolysis of the Po(IV) Aquaion in Water. Journal of Physical Chemistry B, 2010, 114, 12866-12874.	2.6	17
72	Stalking Higher Energy Conformers on the Potential Energy Surface of Charged Species. Journal of Chemical Theory and Computation, 2015, 11, 871-883.	5.3	16

#	Article	IF	Citations
73	The formation of urea in space. Astronomy and Astrophysics, 2018, 610, A26.	5.1	16
74	K-edge XANES investigation of octakis(DMSO)lanthanoid(iii) complexes in DMSO solution and solid iodides. Physical Chemistry Chemical Physics, 2013, 15, 8684.	2.8	15
75	Hydration properties of lanthanoid(iii) carbonate complexes in liquid water determined by polarizable molecular dynamics simulations. Physical Chemistry Chemical Physics, 2014, 16, 3693.	2.8	15
76	Lutetium(iii) aqua ion: On the dynamical structure of the heaviest lanthanoid hydration complex. Journal of Chemical Physics, 2016, 144, 204505.	3.0	15
77	Excited state characterization of carbonyl containing carotenoids: a comparison between single and multireference descriptions. Physical Chemistry Chemical Physics, 2017, 19, 17156-17166.	2.8	15
78	Graph theory for automatic structural recognition in molecular dynamics simulations. Journal of Chemical Physics, 2018, 149, 184102.	3.0	15
79	Molecular dynamics simulations of the temperature and density dependence of the absorption spectra of hydrated electron and solvated silver atom in water. Chemical Physics Letters, 2005, 409, 219-223.	2.6	14
80	A combined spectroscopic and theoretical approach to investigate structural properties of Co(ii)/Co(iii) tris-cysteinato complexes in aqueous medium. New Journal of Chemistry, 2007, 31, 1789.	2.8	14
81	Perfluoroalkyl-Fluorophosphate Anions for High Voltage Electrolytes in Lithium Cells: DFT Study. Journal of Physical Chemistry C, 2014, 118, 24221-24230.	3.1	13
82	Gas phase fragmentation mechanisms of protonated testosterone as revealed by chemical dynamics simulations. International Journal of Mass Spectrometry, 2016, 407, 40-50.	1.5	13
83	Threshold for shattering fragmentation in collision-induced dissociation of the doubly protonated tripeptide TIK(H ⁺) ₂ . Physical Chemistry Chemical Physics, 2018, 20, 19744-19749.	2.8	13
84	Exploring reactivity and product formation in N(4S) collisions with pristine and defected graphene with direct dynamics simulations. Journal of Chemical Physics, 2020, 153, 184702.	3.0	13
85	Cu2+ binding chalcogen–chalcogen bridges: A problematic case for DFT. Computational and Theoretical Chemistry, 2010, 954, 7-15.	1.5	12
86	Temperature influence on lanthanoids (III) hydration from molecular dynamics simulations. Chemical Physics Letters, 2010, 498, 90-96.	2.6	12
87	Reactivity of lanthanoid mono-cations with ammonia: A combined inductively coupled plasma mass spectrometry and computational investigation. International Journal of Mass Spectrometry, 2013, 334, 27-37.	1.5	12
88	Solvation effects drive the selectivity in Diels–Alder reaction under hyperbaric conditions. Chemical Communications, 2020, 56, 6632-6635.	4.1	12
89	Molecular dynamics to rationalize EXAFS experiments: A dynamical model explaining hydration behaviour across the lanthanoid(III) series. Journal of Physics: Conference Series, 2009, 190, 012056.	0.4	11
90	Fragmentation Spectra Prediction and DNA Adducts Structural Determination. Journal of the American Society for Mass Spectrometry, 2019, 30, 2771-2784.	2.8	10

#	Article	IF	Citations
91	A first principles polarizable water model for molecular simulations: application to a water dimer. Journal of Molecular Liquids, 2002, 101, 181-198.	4.9	9
92	Charge localization in multiply charged clusters and their electrical properties: Some insights into electrospray droplets. Journal of Chemical Physics, 2012, 136, 184503.	3.0	9
93	Varying the charge of small cations in liquid water: Structural, transport, and thermodynamical properties. Journal of Chemical Physics, 2012, 137, 164501.	3.0	9
94	Assignment of IR bands of isolated and protein-bound Peridinin in its fundamental and triplet state by static FTIR, time-resolved step-scan FTIR and DFT calculations. Journal of Molecular Structure, 2015, 1090, 58-64.	3.6	9
95	Structure and stability of charged clusters. Journal of Physics Condensed Matter, 2012, 24, 284130.	1.8	8
96	Conical intersection structure and dynamics for a model protonated schiff base photoisomerization in solution. International Journal of Quantum Chemistry, 2013, 113, 296-305.	2.0	7
97	Easy eco-friendly phenonium ion production from phenethyl alcohols in dimethyl carbonate. Tetrahedron Letters, 2013, 54, 5004-5006.	1.4	7
98	A RRKM study and a DFT assessment on gas-phase fragmentation of formamide–M2+ (M = Ca, Sr). Physical Chemistry Chemical Physics, 2014, 16, 14813.	2.8	7
99	Formation of Co(II), Ni(II), Zn(II) complexes of alternative metal binding heptapeptides and nitrilotriacetic acid: Discovering new potential affinity tags. International Journal of Mass Spectrometry, 2021, 463, 116554.	1.5	7
100	Structure and collision-induced dissociation of the protonated cyclo His-Phe dipeptide: mechanistic studies and stereochemical effects. European Physical Journal D, 2021, 75, 1.	1.3	7
101	Stereospecific collision-induced dissociation and vibrational spectroscopy of protonated cyclo (Tyr-Pro). International Journal of Mass Spectrometry, 2021, 465, 116590.	1.5	7
102	Determination of kinetic properties in unimolecular dissociation of complex systems from graph theory based analysis of an ensemble of reactive trajectories. Journal of Chemical Physics, 2021, 155, 124103.	3.0	7
103	XAS examination of glutathione–cobalt complexes in solution. Journal of Inorganic Biochemistry, 2015, 142, 126-131.	3.5	6
104	Gas-phase reactivity of [Ca(formamide)] ²⁺ complex: an example of different dynamical behaviours. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160196.	3.4	6
105	Efficient and Accurate Description of Dielsâ€Alder Reactions Using Density Functional Theory**. ChemPhysChem, 2022, 23, .	2.1	6
106	Solvent Structure around Lanthanoid(III) Ions in Liquid DMSO As Revealed by Polarizable Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2015, 119, 13347-13357.	2.6	5
107	On the Use of Quantum Thermal Bath in Unimolecular Fragmentation Simulation. Journal of Physical Chemistry A, 2019, 123, 8542-8551.	2.5	5
108	Collisional dynamics simulations revealing fragmentation properties of Zn(<scp>ii</scp>)-bound poly-peptide. Physical Chemistry Chemical Physics, 2020, 22, 14551-14559.	2.8	5

#	Article	IF	Citations
109	In Silico Tandem Mass Spectrometer: an Analytical and Fundamental Tool. Chemistry Methods, 2021, 1, 123-130.	3.8	5
110	Unimolecular Fragmentation Properties of Thermometer Ions from Chemical Dynamics Simulations. Journal of the American Society for Mass Spectrometry, 2021, 32, 169-179.	2.8	5
111	Speciation and thermodynamic properties of La(III)-Cl complexes in hydrothermal fluids: A combined molecular dynamics and in situ X-ray absorption spectroscopy study. Geochimica Et Cosmochimica Acta, 2022, 330, 27-46.	3.9	5
112	Structural, Energetic, and Electronic Properties of La(III)–Dimethyl Sulfoxide Clusters. Journal of Physical Chemistry A, 2014, 118, 11602-11611.	2.5	4
113	How Symmetry Influences the Dissociation of Protonated Cyclic Peptides. Symmetry, 2022, 14, 679.	2.2	4
114	THEORETICAL STUDY OF NEUTRAL DIPOLAR ATOM IN WATER: STRUCTURE, SPECTROSCOPY AND FORMATION OF AN EXCITONIC STATE. Modern Physics Letters B, 2004, 18, 1327-1345.	1.9	3
115	Reactivity of an Excess Electron with Monovalent Cations in Bulk Water by Mixed Quantum Classical Molecular Dynamics Simulations. Molecular Simulation, 2004, 30, 749-754.	2.0	3
116	Developing polarizable potential for molecular dynamics of Cm(III)-carbonate complexes in liquid water. Journal of Molecular Modeling, 2014, 20, 2398.	1.8	3
117	Structure, Stability, and Electronic Properties of Dimethyl Sulfoxide and Dimethyl Formammide Clusters Containing Th ⁴⁺ . Journal of Physical Chemistry A, 2016, 120, 4778-4788.	2.5	3
118	Solvation Properties of the Actinide Ion Th(IV) in DMSO and DMSO:Water Mixtures through Polarizable Molecular Dynamics. Inorganic Chemistry, 2017, 56, 11929-11937.	4.0	3
119	On the formation of propylene oxide from propylene in space: gas-phase reactions. Theoretical Chemistry Accounts, 2019, 138, 1.	1.4	3
120	Infraredâ€Assisted Synthesis of Prebiotic Glycine. ChemPhysChem, 2020, 21, 503-509.	2.1	3
121	Thermochemical and conformational studies of Ni(II) and Zn(II) ternary complexes of alternative metal binding peptides with nitrilotriacetic acid. International Journal of Mass Spectrometry, 2022, 473, 116792.	1.5	3
122	Structural and energetic properties of La3+ in water/DMSO mixtures. Journal of Molecular Structure, 2017, 1148, 381-387.	3.6	2
123	lon–Molecule Reactions as a Possible Synthetic Route for the Formation of Prebiotic Molecules in Space. , 2018, , 277-292.		2
124	p of silicic acid in presence of La ³⁺ using single sweep method coupled to DFT-based molecular dynamics. Molecular Physics, 2013, 111, 3478-3485.	1.7	1
125	TileViz: Tile visualization for direct dynamics applied to astrochemical reactions IS&T International Symposium on Electronic Imaging, 2018, 2018, 286-1-286-7.	0.4	1
126	Solvation and Photochemical Funnels. , 2006, , 143-153.		1

#	Article	IF	CITATIONS
127	Frontispiece: 1,2â€Dimethoxyethane Degradation Thermodynamics in Liâ°'O ₂ Redox Environments. Chemistry - A European Journal, 2016, 22, .	3.3	O
128	Response to "Comment on â€~On the development of polarizable and Lennard-Jones force fields to study hydration structure and dynamics of actinide(III) ions based on effective ionic radii'―[J. Chem. Phys. 150, 097101 (2019)]. Journal of Chemical Physics, 2019, 150, 097102.	3.0	0
129	Computer simulation of collision induced dissociation and isolobal analogy: The case of biotin and its analogs. International Journal of Mass Spectrometry, 2020, 457, 116417.	1.5	0