
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7678214/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cooperative Chemical Coupling and Physical Lubrication Effects Construct Highly Dynamic Ionic Covalent Adaptable Network for High-Performance Wearable Electronics. CCS Chemistry, 2023, 5, 1096-1107.	7.8	16
2	Highly Transparent, Stretchable, and Self-Healable Ionogel for Multifunctional Sensors, Triboelectric Nanogenerator, and Wearable Fibrous Electronics. Advanced Fiber Materials, 2022, 4, 98-107.	16.1	83
3	Biodegradable Elastomers and Gels for Elastic Electronics. Advanced Science, 2022, 9, e2105146.	11.2	45
4	Transparent, stretchable and anti-freezing hybrid double-network organohydrogels. Science China Materials, 2022, 65, 2207-2216.	6.3	18
5	A fluorine-rich phenolic polyurethane elastomer with excellent self-healability and reprocessability and reprocessability and its applications for wearable electronics. Science China Materials, 2022, 65, 2553-2564.	6.3	10
6	Supertough spontaneously self-healing polymer based on septuple dynamic bonds integrated in one chemical group. Science China Chemistry, 2022, 65, 363-372.	8.2	28
7	Three-dimensional-printed polycaprolactone scaffolds with interconnected hollow-pipe structures for enhanced bone regeneration. International Journal of Energy Production and Management, 2022, 9, .	3.7	4
8	Peptidoglycan-inspired autonomous ultrafast self-healing bio-friendly elastomers for bio-integrated electronics. National Science Review, 2021, 8, nwaa154.	9.5	52
9	Degradable and Fully Recyclable Dynamic Thermoset Elastomer for 3Dâ€Printed Wearable Electronics. Advanced Functional Materials, 2021, 31, 2009799.	14.9	109
10	Coupling metal organic frameworks with molybdenum disulfide nanoflakes for targeted cancer theranostics. Biomaterials Science, 2021, 9, 3306-3318.	5.4	12
11	Thermoplastic Photoheating Polymer Enables 3Dâ€Printed Selfâ€Healing Lightâ€Propelled Smart Devices. Advanced Functional Materials, 2021, 31, 2009568.	14.9	22
12	A perfusable, multifunctional epicardial device improves cardiac function and tissue repair. Nature Medicine, 2021, 27, 480-490.	30.7	61
13	Self-healing materials enable free-standing seamless large-scale 3D printing. Science China Materials, 2021, 64, 1791-1800.	6.3	20
14	Simple Solvent-Free Strategy for Synthesizing Covalent Adaptable Networks from Commodity Vinyl Monomers. Macromolecules, 2021, 54, 4081-4088.	4.8	14
15	Hot-Melt Adhesive Based on Dynamic Oxime–Carbamate Bonds. Industrial & Engineering Chemistry Research, 2021, 60, 6925-6931.	3.7	21
16	Self-healing polyurethane-elastomer with mechanical tunability for multiple biomedical applications in vivo. Nature Communications, 2021, 12, 4395.	12.8	93
17	Bacterial cellulose nanofiber reinforced poly(glycerol-sebacate) biomimetic matrix for 3D cell culture. Cellulose, 2021, 28, 8483-8492.	4.9	9
18	Dynamic Oxime-Urethane Bonds, a Versatile Unit of High Performance Self-healing Polymers for Diverse Applications, Chinese Journal of Polymer Science (English Edition), 2021, 39, 1281-1291	3.8	34

#	Article	IF	CITATIONS
19	A Dynamically Hybrid Crosslinked Elastomer for Roomâ€Temperature Recyclable Flexible Electronic Devices. Advanced Functional Materials, 2021, 31, 2106281.	14.9	87
20	A New Strategy of Discretionarily Reconfigurable Actuators Based on Selfâ€Healing Elastomers for Diverse Soft Robots. Advanced Functional Materials, 2021, 31, 2008328.	14.9	51
21	CO2-based poly (propylene carbonate) with various carbonate linkage content for reactive hot-melt polyurethane adhesives. International Journal of Adhesion and Adhesives, 2020, 96, 102456.	2.9	27
22	Bioactive Elastic Scaffolds Loaded with Neural Stem Cells Promote Rapid Spinal Cord Regeneration. ACS Biomaterials Science and Engineering, 2020, 6, 6331-6343.	5.2	24
23	A novel biodegradable external stent regulates vein graft remodeling via the Hippo-YAP and mTOR signaling pathways. Biomaterials, 2020, 258, 120254.	11.4	12
24	Largeâ€Grained Perovskite Films Enabled by Oneâ€Step Meniscusâ€Assisted Solution Printing of Crossâ€Aligned Conductive Nanowires for Biodegradable Flexible Solar Cells. Advanced Energy Materials, 2020, 10, 2001185.	19.5	31
25	Biomimetic Trachea Regeneration Using a Modular Ring Strategy Based on Poly(Sebacoyl) Tj ETQq1 1 0.784314 2020, 30, 2004276.	rgBT /Ove 14.9	rlock 10 Tf 50 41
26	3D printing preview for stereo-lithography based on photopolymerization kinetic models. Bioactive Materials, 2020, 5, 798-807.	15.6	25
27	Effects of the different-sized external stents on vein graft intimal hyperplasia and inflammation. Annals of Translational Medicine, 2020, 8, 102-102.	1.7	9
28	Highly compact nanochannel thin films with exceptional thermal conductivity and water pumping for efficient solar steam generation. Journal of Materials Chemistry A, 2020, 8, 13927-13934.	10.3	28
29	Effect of Bifunctional Î ² Defensin 2-Modified Scaffold on Bone Defect Reconstruction. ACS Omega, 2020, 5, 4302-4312.	3.5	10
30	Mechanically and biologically skin-like elastomers for bio-integrated electronics. Nature Communications, 2020, 11, 1107.	12.8	162
31	Biofunctionalized chondrogenic shape-memory ternary scaffolds for efficient cell-free cartilage regeneration. Acta Biomaterialia, 2020, 105, 97-110.	8.3	65
32	Mechanically and Electronically Robust Transparent Organohydrogel Fibers. Advanced Materials, 2020, 32, e1906994.	21.0	207
33	Bilayered Scaffold Prepared from a Kartogenin-Loaded Hydrogel and BMP-2-Derived Peptide-Loaded Porous Nanofibrous Scaffold for Osteochondral Defect Repair. ACS Biomaterials Science and Engineering, 2019, 5, 4564-4573.	5.2	22
34	Nanofibrous vascular scaffold prepared from miscible polymer blend with heparin/stromal cell-derived factor-1 alpha for enhancing anticoagulation and endothelialization. Colloids and Surfaces B: Biointerfaces, 2019, 181, 963-972.	5.0	25
35	Strong, detachable, and self-healing dynamic crosslinked hot melt polyurethane adhesive. Materials Chemistry Frontiers, 2019, 3, 1833-1839.	5.9	84
36	Tumor-targeted biodegradable multifunctional nanoparticles for cancer theranostics. Chemical Engineering Journal, 2019, 378, 122171.	12.7	22

ZHENGWEI YOU

#	Article	IF	CITATIONS
37	Biodegradable Mesoporous Silica Nanocarrier Bearing Angiogenic QK Peptide and Dexamethasone for Accelerating Angiogenesis in Bone Regeneration. ACS Biomaterials Science and Engineering, 2019, 5, 6766-6778.	5.2	28
38	4-Axis printing microfibrous tubular scaffold and tracheal cartilage application. Science China Materials, 2019, 62, 1910-1920.	6.3	26
39	Hybrid electrospun rapamycin-loaded small-diameter decellularized vascular grafts effectively inhibit intimal hyperplasia. Acta Biomaterialia, 2019, 97, 321-332.	8.3	60
40	A biodegradable functional water-responsive shape memory polymer for biomedical applications. Journal of Materials Chemistry B, 2019, 7, 123-132.	5.8	70
41	Ionogel-based, highly stretchable, transparent, durable triboelectric nanogenerators for energy harvesting and motion sensing over a wide temperature range. Nano Energy, 2019, 63, 103847.	16.0	188
42	Biomimetic Materials with Multiple Protective Functionalities. Advanced Functional Materials, 2019, 29, 1901058.	14.9	85
43	Electrospun Nanofibers for Tissue Engineering with Drug Loading and Release. Pharmaceutics, 2019, 11, 182.	4.5	151
44	Endometrium Injury: PGS Scaffolds Promote the In Vivo Survival and Directional Differentiation of Bone Marrow Mesenchymal Stem Cells Restoring the Morphology and Function of Wounded Rat Uterus (Adv. Healthcare Mater. 5/2019). Advanced Healthcare Materials, 2019, 8, 1970018.	7.6	0
45	Highly efficient self-healable and dual responsive hydrogel-based deformable triboelectric nanogenerators for wearable electronics. Journal of Materials Chemistry A, 2019, 7, 13948-13955.	10.3	163
46	A Highly Efficient Selfâ€Healing Elastomer with Unprecedented Mechanical Properties. Advanced Materials, 2019, 31, e1901402.	21.0	413
47	Elastic 3Dâ€Printed Hybrid Polymeric Scaffold Improves Cardiac Remodeling after Myocardial Infarction. Advanced Healthcare Materials, 2019, 8, e1900065.	7.6	73
48	PGS Scaffolds Promote the In Vivo Survival and Directional Differentiation of Bone Marrow Mesenchymal Stem Cells Restoring the Morphology and Function of Wounded Rat Uterus. Advanced Healthcare Materials, 2019, 8, e1801455.	7.6	50
49	A Biocompatible, Biodegradable, and Functionalizable Copolyester and Its Application in Water-Responsive Shape Memory Scaffold. ACS Biomaterials Science and Engineering, 2019, 5, 1668-1676.	5.2	26
50	3D printing of biomimetic vasculature for tissue regeneration. Materials Horizons, 2019, 6, 1197-1206.	12.2	88
51	Facile preparation of a controlled-release tubular scaffold for blood vessel implantation. Journal of Colloid and Interface Science, 2019, 539, 351-360.	9.4	28
52	Molecularly engineered metal-based bioactive soft materials – Neuroactive magnesium ion/polymer hybrids. Acta Biomaterialia, 2019, 85, 310-319.	8.3	32
53	A general strategy of 3D printing thermosets for diverse applications. Materials Horizons, 2019, 6, 394-404.	12.2	89
54	Sustained release of GDF5 from a designed coacervate attenuates disc degeneration in a rat model. Acta Biomaterialia, 2019, 86, 300-311.	8.3	42

#	Article	IF	CITATIONS
55	Merging metal organic framework with hollow organosilica nanoparticles as a versatile nanoplatform for cancer theranostics. Acta Biomaterialia, 2019, 86, 406-415.	8.3	59
56	AgBr/diatomite for the efficient visible-light-driven photocatalytic degradation of Rhodamine B. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	6
57	Self-Extinguishing Resin Transfer Molding Composites Using Non-Fire-Retardant Epoxy Resin. Materials, 2018, 11, 2554.	2.9	7
58	Wearable Electronics: A Single Integrated 3D-Printing Process Customizes Elastic and Sustainable Triboelectric Nanogenerators for Wearable Electronics (Adv. Funct. Mater. 46/2018). Advanced Functional Materials, 2018, 28, 1870331.	14.9	2
59	A Single Integrated 3Dâ€Printing Process Customizes Elastic and Sustainable Triboelectric Nanogenerators for Wearable Electronics. Advanced Functional Materials, 2018, 28, 1805108.	14.9	126
60	Fabrication of heterogeneous porous bilayered nanofibrous vascular grafts by two-step phase separation technique. Acta Biomaterialia, 2018, 79, 168-181.	8.3	50
61	In vitro osteogenic induction of bone marrow mesenchymal stem cells with a decellularized matrix derived from human adipose stem cells and in vivo implantation for bone regeneration. Journal of Materials Chemistry B, 2017, 5, 2468-2482.	5.8	32
62	Poly (fumaroyl bioxirane) maleate: A potential functional scaffold for bone regeneration. Materials Science and Engineering C, 2017, 76, 249-259.	7.3	10
63	A poly(glycerol sebacate) based photo/thermo dual curable biodegradable and biocompatible polymer for biomedical applications. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 1728-1739.	3.5	16
64	Poly(1,3â€propylene sebacate) and Poly(sebacoyl diglyceride): A Pair of Potential Polymers for the Proliferation and Differentiation of Retinal Progenitor Cells. Macromolecular Bioscience, 2016, 16, 1334-1347.	4.1	8
65	Polyester with Pendent Acetylcholine-Mimicking Functionalities Promotes Neurite Growth. ACS Applied Materials & Interfaces, 2016, 8, 9590-9599.	8.0	18
66	Poly(sebacoyl diglyceride) Cross-Linked by Dynamic Hydrogen Bonds: A Self-Healing and Functionalizable Thermoplastic Bioelastomer. ACS Applied Materials & Interfaces, 2016, 8, 20591-20599.	8.0	70
67	Phosphorylated poly(sebacoyl diglyceride) – a phosphate functionalized biodegradable polymer for bone tissue engineering. Journal of Materials Chemistry B, 2016, 4, 2090-2101.	5.8	38
68	Tissue-engineered mitral valve chordae tendineae: Biomechanical and biological characterization of decellularized porcine chordae. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 56, 205-217.	3.1	5
69	Hybrid small-diameter vascular grafts: Anti-expansion effect of electrospun poly ε-caprolactone on heparin-coated decellularized matrices. Biomaterials, 2016, 76, 359-370.	11.4	135
70	Characterization of human ethmoid sinus mucosa derived mesenchymal stem cells (hESMSCs) and the application of hESMSCs cell sheets in bone regeneration. Biomaterials, 2015, 66, 67-82.	11.4	56
71	A functional polyester carrying free hydroxyl groups promotes the mineralization of osteoblast and human mesenchymal stem cell extracellular matrix. Acta Biomaterialia, 2014, 10, 2814-2823.	8.3	41
72	A biocompatible, metal-free catalyst and its application in microwave-assisted synthesis of functional polyesters. Polymer Chemistry, 2012, 3, 384-389.	3.9	18

#	Article	IF	CITATIONS
73	Fine Control of Polyester Properties via Epoxide ROP Using Monomers Carrying Diverse Functional Groups. Macromolecular Bioscience, 2012, 12, 822-829.	4.1	22
74	A Versatile Synthetic Platform for a Wide Range of Functionalized Biomaterials. Advanced Functional Materials, 2012, 22, 2812-2820.	14.9	41
75	A functional polymer designed for bone tissue engineering. Acta Biomaterialia, 2012, 8, 502-510.	8.3	30
76	A functionalizable polyester with free hydroxyl groups and tunable physiochemical and biological properties. Biomaterials, 2010, 31, 3129-3138.	11.4	112