Jianping Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7677588/publications.pdf Version: 2024-02-01

ILANDING YANG

#	Article	IF	CITATIONS
1	Mercury Removal by Magnetic Biochar Derived from Simultaneous Activation and Magnetization of Sawdust. Environmental Science & Technology, 2016, 50, 12040-12047.	10.0	327
2	Regenerable Cobalt Oxide Loaded Magnetosphere Catalyst from Fly Ash for Mercury Removal in Coal Combustion Flue Gas. Environmental Science & Technology, 2014, 48, 14837-14843.	10.0	141
3	Magnetic iron–manganese binary oxide supported on carbon nanofiber (Fe3â~'xMnxO4/CNF) for efficient removal of Hg0 from coal combustion flue gas. Chemical Engineering Journal, 2018, 334, 216-224.	12.7	135
4	Selenium Functionalized Metal–Organic Framework MIL-101 for Efficient and Permanent Sequestration of Mercury. Environmental Science & Technology, 2019, 53, 2260-2268.	10.0	133
5	Fe-modified MnOx/TiO2 as the SCR catalyst for simultaneous removal of NO and mercury from coal combustion flue gas. Chemical Engineering Journal, 2018, 348, 618-629.	12.7	131
6	Multiform Sulfur Adsorption Centers and Copper-Terminated Active Sites of Nano-CuS for Efficient Elemental Mercury Capture from Coal Combustion Flue Gas. Langmuir, 2018, 34, 8739-8749.	3.5	128
7	Sulfur abundant S/FeS2 for efficient removal of mercury from coal-fired power plants. Fuel, 2018, 232, 476-484.	6.4	126
8	Removal of elemental mercury from flue gas by recyclable CuCl 2 modified magnetospheres catalyst from fly ash. Part 1. Catalyst characterization and performance evaluation. Fuel, 2016, 164, 419-428.	6.4	110
9	Magnetic Rattle-Type Fe ₃ O ₄ @CuS Nanoparticles as Recyclable Sorbents for Mercury Capture from Coal Combustion Flue Gas. ACS Applied Nano Materials, 2018, 1, 4726-4736.	5.0	100
10	In Situ Decoration of Selenide on Copper Foam for the Efficient Immobilization of Gaseous Elemental Mercury. Environmental Science & Technology, 2020, 54, 2022-2030.	10.0	96
11	Mercury Adsorption and Oxidation over Cobalt Oxide Loaded Magnetospheres Catalyst from Fly Ash in Oxyfuel Combustion Flue Gas. Environmental Science & Technology, 2015, 49, 8210-8218.	10.0	88
12	Nanosized Copper Selenide Functionalized Zeolitic Imidazolate Frameworkâ€8 (CuSe/ZIFâ€8) for Efficient Immobilization of Gasâ€₽hase Elemental Mercury. Advanced Functional Materials, 2019, 29, 1807191.	14.9	74
13	Promotional effect of CuO loading on the catalytic activity and SO2 resistance of MnOx/TiO2 catalyst for simultaneous NO reduction and Hg0 oxidation. Fuel, 2018, 227, 79-88.	6.4	73
14	Removal of elemental mercury from flue gas by recyclable CuCl2 modified magnetospheres from fly ash. Part 4. Performance of sorbent injection in an entrained flow reactor system. Fuel, 2018, 220, 403-411.	6.4	70
15	Removal of elemental mercury from flue gas by recyclable CuCl2 modified magnetospheres catalyst from fly ash. Part 2. Identification of involved reaction mechanism. Fuel, 2016, 167, 366-374.	6.4	66
16	Simultaneous NO and mercury removal over MnO x /TiO 2 catalyst in different atmospheres. Fuel Processing Technology, 2017, 166, 282-290.	7.2	64
17	Surface-Engineered Sponge Decorated with Copper Selenide for Highly Efficient Gas-Phase Mercury Immobilization. Environmental Science & Technology, 2020, 54, 16195-16203.	10.0	63
18	Elemental mercury oxidation over manganese oxide octahedral molecular sieve catalyst at low flue gas temperature. Chemical Engineering Journal, 2019, 356, 142-150.	12.7	62

JIANPING YANG

#	Article	IF	CITATIONS
19	Mercury Removal from Flue Gas by Noncarbon Sorbents. Energy & Fuels, 2021, 35, 3581-3610.	5.1	60
20	Role of Sulfur Trioxide (SO ₃) in Gas-Phase Elemental Mercury Immobilization by Mineral Sulfide. Environmental Science & Technology, 2019, 53, 3250-3257.	10.0	58
21	Mercury removal from flue gas by magnetospheres present in fly ash: Role of iron species and modification by HF. Fuel Processing Technology, 2017, 167, 263-270.	7.2	57
22	Amorphous Molybdenum Selenide Nanosheet as an Efficient Trap for the Permanent Sequestration of Vaporâ€Phase Elemental Mercury. Advanced Science, 2019, 6, 1901410.	11.2	57
23	Role of flue gas components in Hg0 oxidation over La0.8Ce0.2MnO3 perovskite catalyst in coal combustion flue gas. Chemical Engineering Journal, 2019, 360, 1656-1666.	12.7	56
24	Porous extruded-spheronized Li4SiO4 pellets for cyclic CO2 capture. Fuel, 2019, 236, 1043-1049.	6.4	54
25	Selenide functionalized natural mineral sulfides as efficient sorbents for elemental mercury capture from coal combustion flue gas. Chemical Engineering Journal, 2020, 398, 125611.	12.7	53
26	Dual Roles of Nano-Sulfide in Efficient Removal of Elemental Mercury from Coal Combustion Flue Gas within a Wide Temperature Range. Environmental Science & Technology, 2018, 52, 12926-12933.	10.0	52
27	Density Functional Theory Study of Mercury Adsorption on CuS Surface: Effect of Typical Flue Gas Components. Energy & Fuels, 2019, 33, 1540-1546.	5.1	51
28	Advances in flue gas mercury abatement by mineral chalcogenides. Chemical Engineering Journal, 2021, 411, 128608.	12.7	51
29	Removal of elemental mercury from flue gas by recyclable CuCl 2 modified magnetospheres catalyst from fly ash. Part 3. Regeneration performance in realistic flue gas atmosphere. Fuel, 2016, 173, 1-7.	6.4	48
30	Emission controls of mercury and other trace elements during coal combustion in China: a review. International Geology Review, 2018, 60, 638-670.	2.1	47
31	Development of selenized magnetite (Fe3O4â^'xSey) as an efficient and recyclable trap for elemental mercury sequestration from coal combustion flue gas. Chemical Engineering Journal, 2020, 394, 125022.	12.7	47
32	Charge distribution modulation and morphology controlling of copper selenide for an enhanced elemental mercury adsorption activity in flue gas. Chemical Engineering Journal, 2022, 442, 136145.	12.7	47
33	Role of SO2 and H2O in the mercury adsorption on ceria surface: A DFT study. Fuel, 2020, 260, 116289.	6.4	45
34	Removal of flue gas mercury by porous carbons derived from one-pot carbonization and activation of wood sawdust in a molten salt medium. Journal of Hazardous Materials, 2022, 424, 127336.	12.4	44
35	Synergistic Mercury Removal over the CeMnO ₃ Perovskite Structure Oxide as a Selective Catalytic Reduction Catalyst from Coal Combustion Flue Gas. Energy & Fuels, 2018, 32, 11785-11795.	5.1	42
36	NH3 inhibits mercury oxidation over low-temperature MnOx/TiO2 SCR catalyst. Fuel Processing Technology, 2018, 176, 124-130.	7.2	39

JIANPING YANG

#	Article	IF	CITATIONS
37	Simultaneous NO Reduction and Hg ⁰ Oxidation over La _{0.8} Ce _{0.2} MnO ₃ Perovskite Catalysts at Low Temperature. Industrial & Engineering Chemistry Research, 2018, 57, 9374-9385.	3.7	37
38	Fate of Mercury in Volatiles and Char during in Situ Gasification Chemical-Looping Combustion of Coal. Environmental Science & Technology, 2019, 53, 7887-7892.	10.0	37
39	Recyclable chalcopyrite sorbent for mercury removal from coal combustion flue gas. Fuel, 2021, 290, 120049.	6.4	36
40	Coordinatively Unsaturated Selenides over CuFeSe ₂ toward Highly Efficient Mercury Immobilization. Environmental Science & Technology, 2022, 56, 575-584.	10.0	36
41	Mercury emission and speciation in fly ash from a 35 MW th large pilot boiler of oxyfuel combustion with different flue gas recycle. Fuel, 2017, 195, 174-181.	6.4	33
42	Facile preparation of nanosized copper sulfide functionalized macroporous skeleton for efficient vapor-phase mercury sequestration. Chemical Engineering Journal, 2021, 419, 129561.	12.7	33
43	Stability of mercury on a novel mineral sulfide sorbent used for efficient mercury removal from coal combustion flue gas. Environmental Science and Pollution Research, 2018, 25, 28583-28593.	5.3	32
44	Removal of elemental mercury from flue gas by recyclable CuCl2 modified magnetospheres from fly ash: Part 5. Industrial scale studies at a 50ÂMWth coal-fired power plant. Fuel, 2020, 266, 117052.	6.4	30
45	Amorphous molybdenum selenide intercalated magnetite as a recyclable trap for the effective sequestration of elemental mercury. Journal of Materials Chemistry A, 2020, 8, 14955-14965.	10.3	30
46	Nanosized Copper Selenide for Mercury Removal from Indoor Air and Emergency Disposal of Liquid Mercury Leakage. Industrial & Engineering Chemistry Research, 2019, 58, 21881-21889.	3.7	28
47	Research on the Mechanism of Elemental Mercury Removal over Mn-Based SCR Catalysts by a Developed Hg-TPD Method. Energy & Fuels, 2019, 33, 2467-2476.	5.1	27
48	Toward an Understanding of Fundamentals Governing the Elemental Mercury Sequestration by Metal Chalcogenides. Environmental Science & Technology, 2020, 54, 9672-9680.	10.0	27
49	The adsorption mechanisms of HgO on marcasite-type metal selenides: The influences of metal-terminated site. Chemical Engineering Journal, 2021, 406, 126723.	12.7	27
50	Elemental Mercury Removal from Flue Gas over TiO ₂ Catalyst in an Internal-Illuminated Honeycomb Photoreactor. Industrial & Engineering Chemistry Research, 2018, 57, 17348-17355.	3.7	23
51	Adsorption and Oxidation of Elemental Mercury on Chlorinated ZnS Surface. Energy & Fuels, 2018, 32, 7745-7751.	5.1	22
52	Removal of elemental mercury from flue gas by recyclable CuCl2 modified magnetospheres catalyst from fly ash: Part 6. Commercial scale demonstration at a 1000MWth coal-fired power plant. Fuel, 2022, 310, 122219.	6.4	21
53	Density Functional Theory Study of Elemental Mercury Immobilization on CuSe(001) Surface: Reaction Pathway and Effect of Typical Flue Gas Components. Industrial & Engineering Chemistry Research, 2020, 59, 13603-13612.	3.7	20
54	Enhancement of CeO ₂ modified commercial SCR catalyst for synergistic mercury removal from coal combustion flue gas. RSC Advances, 2020, 10, 25325-25338.	3.6	18

JIANPING YANG

#	Article	IF	CITATIONS
55	Role of SO3 in Elemental Mercury Removal by Magnetic Biochar. Energy & Fuels, 2019, 33, 11446-11453.	5.1	17
56	The influences of selenium species on mercury removal over pyrite surface: A density functional theory study. Fuel, 2021, 292, 120284.	6.4	17
57	Favorably adjusting the pore characteristics of copper sulfide by template regulation for vapor-phase elemental mercury immobilization. Journal of Materials Chemistry A, 2022, 10, 10729-10737.	10.3	17
58	Density Functional Theory Studies of the Adsorption and Interactions between Selenium Species and Mercury on Activated Carbon. Energy & Fuels, 2020, 34, 9779-9786.	5.1	16
59	Theoretical Study on Hg ⁰ Adsorption and Oxidation Mechanisms over CuCl ₂ -Impregnated Carbonaceous Material Surface. Energy & Fuels, 2018, 32, 7125-7131.	5.1	13
60	Advances in magnetically recyclable remediators for elemental mercury degradation in coal combustion flue gas. Journal of Materials Chemistry A, 2020, 8, 18624-18650.	10.3	10
61	Reduction of oxidized mercury over NOx selective catalytic reduction catalysts: A review. Chemical Engineering Journal, 2021, 421, 127745.	12.7	10
62	Elemental mercury removal from flue gas using modified tonstein: Performance of adsorbent injection at an entrained flow reactor system and 50-MW coal-fired power plant in China. Journal of Cleaner Production, 2021, 287, 124998.	9.3	10
63	Binary mineral sulfides sorbent with wide temperature range for rapid elemental mercury uptake from coal combustion flue gas. Environmental Technology (United Kingdom), 2021, 42, 160-169.	2.2	10
64	Elemental mercury removal from simulated coal-fired flue gas by modified tonstein in coal seam. Fuel, 2021, 284, 119016.	6.4	9
65	Light irradiation inhibits mercury adsorption by mineral sulfide sorbent. Fuel, 2021, 288, 119663.	6.4	8
66	Numerical simulation of sorbent injection for mercury removal within an electrostatic precipitator: In-flight plus wall-bounded mechanism. Fuel, 2022, 309, 122142.	6.4	8
67	Mechanisms of Gas-Phase Mercury Immobilized by Metal Sulfides from Combustion Flue Gas: A Mini Review. Energy & Fuels, 2022, 36, 6027-6037.	5.1	8
68	HgCl ₂ Reduction under a Low-Temperature Selective Catalytic Reduction Atmosphere. Energy & Fuels, 2020, 34, 2417-2424.	5.1	6
69	Photocatalytic removal of elemental mercury via Ce-doped TiO2 catalyst coupling with a novel optical fiber monolith reactor. Environmental Science and Pollution Research, 2020, 27, 21281-21291.	5.3	6
70	A Molten-Salt Pyrolysis Synthesis Strategy toward Sulfur-Functionalized Carbon for Elemental Mercury Removal from Coal-Combustion Flue Gas. Energies, 2022, 15, 1840.	3.1	6
71	Facile pathway towards crystallinity adjustment and performance enhancement of copper selenide for vapor-phase elemental mercury sequestration. Chemical Engineering Journal, 2022, 430, 132811.	12.7	5
72	Mercury removal performance over a Ce-doped V-W/TiO2 catalyst in an internally illuminated honeycomb photoreactor. Science China Technological Sciences, 2021, 64, 2441.	4.0	3