Luis Manuel Frutos Gaite

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7677528/publications.pdf

Version: 2024-02-01

68 papers 4,129 citations

257450 24 h-index 63 g-index

72 all docs

72 docs citations

times ranked

72

4431 citing authors

#	Article	IF	CITATIONS
1	The concept of substituent-induced force in the rationale of substituent effect. Journal of Chemical Physics, 2021, 154, 224106.	3.0	4
2	Thermal and Mechanochemical Tuning of the Porphyrin Singlet-Triplet Gap for Selective Energy Transfer Processes: A Molecular Dynamics Approach. Journal of Chemical Theory and Computation, 2021, 17, 5429-5439.	5. 3	7
3	How mechanical forces can modulate the metal affinity and selectivity of metal binding sites in proteins. Metallomics, 2020, 12, 363-370.	2.4	4
4	OpenMolcas: From Source Code to Insight. Journal of Chemical Theory and Computation, 2019, 15, 5925-5964.	5. 3	661
5	Photoreactivity Control Mediated by Molecular Force Probes in Stilbene. Journal of Physical Chemistry Letters, 2019, 10, 1063-1067.	4.6	14
6	Photosensitized Retinal Isomerization in Rhodopsin Mediated by a Triplet State. ChemPhotoChem, 2019, 3, 925-932.	3.0	6
7	Mechanochemical Improvement of Norbornadiene-Based Molecular Solar–Thermal Systems Performance. ACS Sustainable Chemistry and Engineering, 2019, 7, 19496-19504.	6.7	10
8	Câ€"H Functionalization of BN-Aromatics Promoted by Addition of Organolithium Compounds to the Boron Atom. Organic Letters, 2018, 20, 4902-4906.	4.6	22
9	Molecular Switching by Electron Holes. CheM, 2018, 4, 1488-1489.	11.7	2
10	Mechanochemical Tuning of Pyrene Absorption Spectrum Using Force Probes. Journal of Chemical Theory and Computation, 2017, 13, 727-736.	5.3	8
11	Optomechanical Control of Quantum Yield in <i>Trans</i> i>â€" <i>Cis</i> Ultrafast Photoisomerization of a Retinal Chromophore Model. Angewandte Chemie - International Edition, 2017, 56, 3842-3846.	13.8	24
12	Optomechanical Control of Quantum Yield in ⟨i>Trans⟨ i>â€"⟨i>Cis⟨ i> Ultrafast Photoisomerization of a Retinal Chromophore Model. Angewandte Chemie, 2017, 129, 3900-3904.	2.0	15
13	Synthesis, Optical Properties, and Regioselective Functionalization of 4a-Aza-10a-boraphenanthrene. Organic Letters, 2017, 19, 3458-3461.	4.6	48
14	How Do Methyl Groups Enhance the Triplet Chemiexcitation Yield of Dioxetane?. Journal of Physical Chemistry Letters, 2017, 8, 3790-3794.	4.6	24
15	<scp>Molcas</scp> 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table. Journal of Computational Chemistry, 2016, 37, 506-541.	3.3	1,317
16	Study of Model Systems for Bilirubin and Bilin Chromophores: Determination and Modification of Thermal and Photochemical Properties. Journal of Organic Chemistry, 2016, 81, 6292-6302.	3.2	12
17	Probing the Photodynamics of Rhodopsins with Reduced Retinal Chromophores. Journal of Chemical Theory and Computation, 2016, 12, 839-850.	5.3	43
18	A biomimetic molecular switch at work: coupling photoisomerization dynamics to peptide structural rearrangement. Physical Chemistry Chemical Physics, 2016, 18, 6742-6753.	2.8	16

#	Article	IF	CITATIONS
19	Directionality of Double-Bond Photoisomerization Dynamics Induced by a Single Stereogenic Center. Journal of Physical Chemistry Letters, 2015, 6, 599-604.	4.6	53
20	Mechanical Forces Alter Conical Intersections Topology. Journal of Chemical Theory and Computation, 2015, 11, 3740-3745.	5.3	14
21	Hydantoin-Based Molecular Photoswitches. Journal of Organic Chemistry, 2015, 80, 3929-3939.	3.2	31
22	Definition and determination of the triplet-triplet energy transfer reaction coordinate. Journal of Chemical Physics, 2014, 140, 034102.	3.0	7
23	Tuning molecular excitation energy with external forces. Computational and Theoretical Chemistry, 2014, 1040-1041, 106-111.	2.5	12
24	Toward an Optomechanical Control of Photoswitches by Tuning Their Spectroscopical Properties: Structural and Dynamical Insights into Azobenzene. Journal of Chemical Theory and Computation, 2014, 10, 312-323.	5.3	24
25	Shape of Multireference, Equation-of-Motion Coupled-Cluster, and Density Functional Theory Potential Energy Surfaces at a Conical Intersection. Journal of Chemical Theory and Computation, 2014, 10, 3074-3084.	5.3	161
26	E/Z Photochemical switches: syntheses, properties and applications. RSC Advances, 2013, 3, 6241.	3.6	95
27	Chiral Hydrogen Bond Environment Providing Unidirectional Rotation in Photoactive Molecular Motors. Journal of Physical Chemistry Letters, 2013, 4, 1389-1396.	4.6	59
28	Modulating Nitric Oxide Release by $\langle i \rangle S \langle i \rangle$ -Nitrosothiol Photocleavage: Mechanism and Substituent Effects. Journal of Physical Chemistry A, 2012, 116, 7039-7049.	2.5	19
29	Photostability Mechanisms in Human γB-Crystallin: Role of the Tyrosine Corner Unveiled by Quantum Mechanics/Molecular Mechanics Methodologies. Journal of Chemical Theory and Computation, 2012, 8, 1351-1359.	5.3	5
30	Structural Substituent Effect in the Excitation Energy of a Chromophore: Quantitative Determination and Application to S-Nitrosothiols. Journal of Chemical Theory and Computation, 2012, 8, 3293-3302.	5.3	13
31	On the mechanism of the photocyclization of azadienes. Tetrahedron, 2012, 68, 730-736.	1.9	2
32	Unusual Approach to 3-Aryl-2-aminopyridines through a Radical Mechanism: Synthesis and Theoretical Rationale from Quantum Mechanical Calculationsâ€. Journal of Organic Chemistry, 2011, 76, 1452-1455.	3.2	9
33	First principles study of photostability within hydrogen-bonded amino acids. Physical Chemistry Chemical Physics, 2011, 13, 7805.	2.8	8
34	Thermodynamic, Kinetic, and Mechanistic Study of Oxygen Atom Transfer from Mesityl Nitrile Oxide to Phosphines and to a Terminal Metal Phosphido Complex. Inorganic Chemistry, 2011, 50, 9620-9630.	4.0	23
35	The Ultrafast Photoisomerizations of Rhodopsin and Bathorhodopsin Are Modulated by Bond Length Alternation and HOOP Driven Electronic Effects. Journal of the American Chemical Society, 2011, 133, 3354-3364.	13.7	157
36	Trapping Unstable Terminal Mâ^O Multiple Bonds of Monocyclopentadienyl Niobium and Tantalum Complexes with Lewis Acids. Inorganic Chemistry, 2010, 49, 10642-10648.	4.0	11

#	Article	IF	Citations
37	Modeling, Preparation, and Characterization of a Dipole Moment Switch Driven by <i>Z</i> /i>/ <i>E</i> Photoisomerization. Journal of the American Chemical Society, 2010, 132, 9310-9319.	13.7	53
38	Photoinduced Proton Transfer as a Possible Mechanism for Highly Efficient Excited-State Deactivation in Proteins. Journal of Physical Chemistry Letters, 2010, 1, 425-428.	4.6	22
39	Regioselective Synthesis of 1,2- and 1,3-Di(silylamido)cyclopentadienyl Zirconium Complexes. Organometallics, 2010, 29, 263-268.	2.3	5
40	Theoretical Study on the Mechanism and Regioselectivity of the Macromolecular Substitution Reactions of [NPCl ₂ _{<i>n</i>} with Bifunctional Nucleophiles by a Combination of Quantum Mechanical and Molecular Dynamics Calculations. Macromolecules, 2009, 42, 8769-8773.	4.8	13
41	Photochemistry of hydrogen-bonded aromatic pairs: Quantum dynamical calculations for the pyrrole–pyridine complex. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12707-12712.	7.1	74
42	Olefin isomerisation versus hydrozirconation: a case of a stable \hat{I}^2 -hydrogen-containing Zr-alkyl derivative. Dalton Transactions, 2008, , 2670.	3.3	10
43	Relationship between the Excited State Relaxation Paths of Rhodopsin and Isorhodopsin. Journal of the American Chemical Society, 2008, 130, 3382-3388.	13.7	58
44	Tracking the excited-state time evolution of the visual pigment with multiconfigurational quantum chemistry. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7764-7769.	7.1	266
45	The Role of Intersection Space Segments in Photochemical Reactions. AIP Conference Proceedings, 2007, , .	0.4	О
46	The Role of the Intersection Space in the Photochemistry of Tricyclo[3.3.0.02,6]octa-3,7-diene. Journal of Physical Chemistry A, 2007, 111, 2830-2838.	2. 5	7
47	Fluorescence Emission Anisotropy Coupled to an Electrochemical System:  Study of Exciton Dynamics in Conjugated Polymers. Journal of Physical Chemistry C, 2007, 111, 18405-18410.	3.1	23
48	Photoinduced Electron and Proton Transfer in the Hydrogen-Bonded Pyridineâ^Pyrrole System. Journal of Physical Chemistry B, 2007, 111, 6110-6112.	2.6	31
49	New Computational Approaches in the Study of Nonvertical Triplet Energy Transfer. AIP Conference Proceedings, 2007, , .	0.4	O
50	Alkylmono(cyclopentadienyl)titanium Complexes Containing the 2,2′-Methylenebis(6-tert-butyl-4-methylphenoxido) Ligand – Studies on the Nature of the Catalytic Species Present in α-Olefin Polymerisation Processes. European Journal of Inorganic Chemistry, 2007, 2007, 147-161.	2.0	8
51	Carbon Dioxide Activation Assisted by a Bis(chlorodimethylsilyl)cyclopentadienyl Titanium Compound. Angewandte Chemie - International Edition, 2005, 44, 5828-5830.	13.8	18
52	Intramolecular Tripletâ^'Triplet Energy Transfer in Oxa- and Aza-di-Ï€-methane Photosensitized Systems. Journal of Physical Chemistry A, 2005, 109, 2993-2995.	2. 5	10
53	Correlated MO Study of the Low-Barrier Intramolecular Motions in Donorâ^'Acceptor Ethenes. Journal of Physical Chemistry A, 2005, 109, 10388-10395.	2.5	2
54	Trapping Unstable Terminal Taâ^'O Multiple Bonds of Monocyclopentadienyl Tantalum Complexes with a Lewis Acid. Organometallics, 2005, 24, 2004-2007.	2.3	27

#	Article	IF	CITATIONS
55	A new algorithm for predicting triplet-triplet energy-transfer activated complex coordinate in terms of accurate potential-energy surfaces. Journal of Chemical Physics, 2005, 123, 104108.	3.0	13
56	Triplet versus Singlet Photoreaction Mechanism in the Barrelene Di-Ï€-methane Rearrangement. Organic Letters, 2004, 6, 1229-1231.	4.6	25
57	A theory ofnonvertical triplet energy transfer in terms of accurate potential energy surfaces: The transfer reaction from $\ddot{\ }\ \ddot{\ }\ \ $	3.0	34
58	Theoretical Determination of the Singlet → Singlet and Singlet → Triplet Electronic Spectra, Lowest Ionization Potentials, and Electron Affinity of Cyclooctatetraene. Journal of Physical Chemistry A, 2003, 107, 5472-5478.	2.5	36
59	Monocyclopentadienyl andansa-Monocyclopentadienylalkoxo Complexes of Titanium Containing the 2,2â€~.Methylenebis(6-tert-butyl-4-methylphenoxo) Ligand. Synthesis, Characterization, and Polymerization Catalyst Behavior. Molecular Structure of Ti(η5-C5H5)(η2-MBMP)Cl, Ti(η5-C5Me5)(η2-MBMP)Cl, and Ti(η5-C5H4SiMe2-η1-MBMP)Cl2. Organometallics. 2003. 22. 2694-2704.	2.3	38
60	Role of bifurcation in the bond shifting of cyclooctatetraene. Journal of Computational Chemistry, 2002, 23, 732-736.	3.3	40
61	Note on the theory of bifurcation of chemical reactions. International Journal of Quantum Chemistry, 2002, 86, 422-425.	2.0	12
62	Cyclooctatetraene Computational Photo- and Thermal Chemistry:Â A Reactivity Model for Conjugated Hydrocarbons. Journal of the American Chemical Society, 2002, 124, 13770-13789.	13.7	75
63	Ab Initio Based Exploration of the Potential Energy Surface for the Double Proton Transfer in the First Excited Singlet Electronic State of the 7-Azaindole Dimer. Journal of Physical Chemistry A, 2001, 105, 3887-3893.	2.5	70
64	The Valence Isomerization of Cyclooctatetraene to Semibullvalene. Angewandte Chemie - International Edition, 2000, 39, 2095-2097.	13.8	25
65	Organic Thermochemistry at High ab Initio Levels. 3. A G3 Study of Cyclic Saturated and Unsaturated Hydrocarbons (Including Aromatics). Journal of Organic Chemistry, 2000, 65, 4298-4302.	3.2	82
66	Organic Thermochemistry at High ab Initio Levels. 1. A G2(MP2) and G2 Study of Cyclic Saturated and Unsaturated Hydrocarbons (Including Aromatics). Journal of Organic Chemistry, 1999, 64, 9011-9014.	3.2	86
67	Organic Thermochemistry at High ab Initio Levels. 2. Meeting the Challenge:Â Standard Heats of Formation of Gaseous Norbornane, 2-Norbornene, 2,5-Norbornadiene, Cubane, and Adamantane at the G2 Level. Journal of Organic Chemistry, 1999, 64, 9015-9018.	3.2	20
68	Design of Improved Molecular Solarâ€Thermal Systems by Mechanochemistry: The Case of Azobenzene. Advanced Sustainable Systems, 0, , 2200097.	5.3	2