Emily L Que

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/767751/publications.pdf

Version: 2024-02-01

46 papers

4,780 citations

304743

22

h-index

243625 44 g-index

46 all docs

46 docs citations

times ranked

46

5740 citing authors

#	Article	IF	Citations
1	Metals in Neurobiology: Probing Their Chemistry and Biology with Molecular Imaging. Chemical Reviews, 2008, 108, 1517-1549.	47.7	1,873
2	Synthetic fluorescent sensors for studying the cell biology of metals. Nature Chemical Biology, 2008, 4, 168-175.	8.0	1,011
3	Responsive magnetic resonance imaging contrast agents as chemical sensors for metals in biology and medicine. Chemical Society Reviews, 2010, 39, 51-60.	38.1	237
4	Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks. Nature Chemistry, 2015, 7, 130-139.	13.6	185
5	A Smart Magnetic Resonance Contrast Agent for Selective Copper Sensing. Journal of the American Chemical Society, 2006, 128, 15942-15943.	13.7	148
6	Biomimetic Aryl Hydroxylation Derived from Alkyl Hydroperoxide at a Nonheme Iron Center. Evidence for an FeIVO Oxidant. Journal of the American Chemical Society, 2003, 125, 2113-2128.	13.7	147
7	Copper-Responsive Magnetic Resonance Imaging Contrast Agents. Journal of the American Chemical Society, 2009, 131, 8527-8536.	13.7	139
8	The zinc spark is an inorganic signature of human egg activation. Scientific Reports, 2016, 6, 24737.	3.3	91
9	Exploiting Copper Redox for ¹⁹ F Magnetic Resonance-Based Detection of Cellular Hypoxia. Journal of the American Chemical Society, 2016, 138, 2937-2940.	13.7	76
10	Zinc sparks induce physiochemical changes in the egg zona pellucida that prevent polyspermy. Integrative Biology (United Kingdom), 2017, 9, 135-144.	1.3	72
11	¹⁹ F Magnetic Resonance Activity-Based Sensing Using Paramagnetic Metals. Accounts of Chemical Research, 2020, 53, 2-10.	15.6	69
12	Fluxes in "Free―and Total Zinc Are Essential for Progression of Intraerythrocytic Stages of Plasmodium falciparum. Chemistry and Biology, 2012, 19, 731-741.	6.0	60
13	Hypoxia-Responsive ¹⁹ F MRI Probes with Improved Redox Properties and Biocompatibility. Inorganic Chemistry, 2017, 56, 6429-6437.	4.0	58
14	¹⁹ F PARASHIFT Probes for Magnetic Resonance Detection of H ₂ O ₂ and Peroxidase Activity. Journal of the American Chemical Society, 2018, 140, 10546-10552.	13.7	56
15	The fertilization-induced zinc spark is a novel biomarker of mouse embryo quality and early development. Scientific Reports, 2016, 6, 22772.	3.3	52
16	A copper-activated magnetic resonance imaging contrast agent with improved turn-on relaxivity response and anion compatibility. Dalton Transactions, 2010, 39, 469-476.	3.3	51
17	A cell-permeable gadolinium contrast agent for magnetic resonance imaging of copper in a Menkes disease model. Chemical Science, 2012, 3, 1829.	7.4	41
18	A Co ^{II} complex for ¹⁹ F MRI-based detection of reactive oxygen species. Chemical Communications, 2016, 52, 13885-13888.	4.1	41

#	Article	IF	Citations
19	Visible Light Mediated Bidirectional Control over Carbonic Anhydrase Activity in Cells and <i>in Vivo</i> Using Azobenzenesulfonamides. Journal of the American Chemical Society, 2020, 142, 14522-14531.	13.7	40
20	Bovine eggs release zinc in response to parthenogenetic and sperm-induced egg activation. Theriogenology, 2019, 127, 41-48.	2.1	34
21	The inorganic anatomy of the mammalian preimplantation embryo and the requirement of zinc during the first mitotic divisions. Developmental Dynamics, 2015, 244, 935-947.	1.8	25
22	Alignment of low-dose X-ray fluorescence tomographyÂimages using differential phase contrast. Journal of Synchrotron Radiation, 2014, 21, 229-234.	2.4	24
23	Copper(<scp>ii</scp>) complexes for cysteine detection using ¹⁹ F magnetic resonance. Dalton Transactions, 2018, 47, 15024-15030.	3.3	23
24	Visualizing the Dynamic Metalation State of New Delhi Metallo- \hat{l}^2 -lactamase-1 in Bacteria Using a Reversible Fluorescent Probe. Journal of the American Chemical Society, 2021, 143, 8314-8323.	13.7	22
25	A dual-responsive probe for detecting cellular hypoxia using ¹⁹ F magnetic resonance and fluorescence. Chemical Communications, 2019, 55, 8860-8863.	4.1	21
26	Reversible Solid-State Isomerism of Azobenzene-Loaded Large-Pore Isoreticular Mg-CUK-1. Journal of the American Chemical Society, 2020, 142, 6467-6471.	13.7	18
27	Highly fluorinated metal complexes as dual 19F and PARACEST imaging agents. Dalton Transactions, 2019, 48, 9337-9341.	3.3	16
28	Interrogating Intracellular Zinc Chemistry with a Long Stokes Shift Zinc Probe ZincBY-4. Journal of the American Chemical Society, 2019, 141, 16696-16705.	13.7	15
29	In Situ Photoregulation of Carbonic Anhydrase Activity Using Azobenzenesulfonamides. Biochemistry, 2019, 58, 48-53.	2.5	15
30	Hexadecyl-functionalized lamellar mesostructured silicates and aluminosilicates designed for polymer–clay nanocomposites. Part I. Clay synthesis and structure. Polymer, 2005, 46, 4421-4430.	3.8	14
31	Self-assembly of high-nuclearity lanthanide-based nanoclusters for potential bioimaging applications. Nanoscale, 2016, 8, 11123-11129.	5.6	14
32	Responsive fluorinated nanoemulsions for ¹⁹ F magnetic resonance detection of cellular hypoxia. Dalton Transactions, 2020, 49, 16419-16424.	3.3	13
33	Versatile Nickel(II) Scaffolds as Coordinationâ€Induced Spinâ€State Switches for 19 F Magnetic Resonanceâ€Based Detection. Angewandte Chemie - International Edition, 2020, 59, 22523-22530.	13.8	13
34	Harnessing chemical exchange: ¹⁹ F magnetic resonance OFF/ON zinc sensing with a Tm(<scp>iii</scp>) complex. Chemical Communications, 2020, 56, 6257-6260.	4.1	13
35	Towards Ni(II) complexes with spin switches for 19F MR-based pH sensing. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2019, 32, 89-96.	2.0	11
36	A new probe for detecting zinc-bound carbonic anhydrase in cell lysates and cells. Chemical Communications, 2018, 54, 5442-5445.	4.1	10

#	Article	IF	CITATIONS
37	Copper(II) Pyridyl Aminophenolates: Hypoxiaâ€Selective, Nucleusâ€Targeting Cytotoxins, and Magnetic Resonance Probes. Chemistry - A European Journal, 2021, 27, 9839-9849.	3.3	10
38	Versatile Nickel(II) Scaffolds as Coordinationâ€Induced Spinâ€State Switches for 19 F Magnetic Resonanceâ€Based Detection. Angewandte Chemie, 2020, 132, 22712-22719.	2.0	6
39	Zinc as a Key Meiotic Cell-Cycle Regulator in the Mammalian Oocyte. , 2014, , 315-333.		4
40	Synthesis of lamellar isobutyl silicates and dispersion in polypropylene melts. Journal of Applied Polymer Science, 2007, 105, 1456-1465.	2.6	3
41	Pullâ€Down of Metalloproteins in Their Native States by Using Desthiobiotinâ€Based Probes. ChemBioChem, 2019, 20, 1003-1007.	2.6	3
42	Glutathione-mediated activation of a disulfide containing Fe3+ complex. Inorganica Chimica Acta, 2019, 490, 139-143.	2.4	2
43	Structural insights into the design of reversible fluorescent probes for metallo- \hat{l}^2 -lactamases NDM-1, VIM-2, and IMP-1. Journal of Inorganic Biochemistry, 2022, 233, 111869.	3.5	2
44	Modulating extraction and retention of fluorinated \hat{l}^2 -diketonate metal complexes in perfluorocarbons through the use of non-fluorinated neutral ligands. Inorganic Chemistry Frontiers, 2021, 8, 4488-4496.	6.0	1
45	Visible luminescent Ln ₄₂ nanotorus coordination clusters. Journal of Coordination Chemistry, 2021, 74, 92-101.	2.2	1
46	1,5-Dibromo-2,4-bis[(2-bromophenyl)ethynyl]benzene. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o2894-o2895.	0.2	0