Josefina Torres Redondo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7677037/publications.pdf

Version: 2024-02-01

36 papers

2,641 citations

³⁶¹⁴¹³
20
h-index

642732 23 g-index

36 all docs 36 docs citations

36 times ranked 3223 citing authors

#	Article	IF	CITATIONS
1	Mars' Surface Radiation Environment Measured with the Mars Science Laboratory's Curiosity Rover. Science, 2014, 343, 1244797.	12.6	475
2	Abundance and Isotopic Composition of Gases in the Martian Atmosphere from the Curiosity Rover. Science, 2013, 341, 263-266.	12.6	327
3	REMS: The Environmental Sensor Suite for the Mars Science Laboratory Rover. Space Science Reviews, 2012, 170, 583-640.	8.1	247
4	Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars. Science, 2013, 341, 1238670.	12.6	215
5	The atmosphere of Mars as observed by InSight. Nature Geoscience, 2020, 13, 190-198.	12.9	161
6	New results on thermal and photodesorption of CO ice using the novel InterStellar Astrochemistry Chamber (ISAC). Astronomy and Astrophysics, 2010, 522, A108.	5.1	127
7	Winds measured by the Rover Environmental Monitoring Station (REMS) during the Mars Science Laboratory (MSL) rover's Bagnold Dunes Campaign and comparison with numerical modeling using MarsWRF. Icarus, 2017, 291, 203-231.	2.5	119
8	Curiosity's rover environmental monitoring station: Overview of the first 100 sols. Journal of Geophysical Research E: Planets, 2014, 119, 1680-1688.	3.6	112
9	The Tinto River, an extreme acidic environment under control of iron, as an analog of the Terra Meridiani hematite site of Mars. Planetary and Space Science, 2004, 52, 239-248.	1.7	110
10	InSight Auxiliary Payload Sensor Suite (APSS). Space Science Reviews, 2019, 215, 1.	8.1	104
11	Low Upper Limit to Methane Abundance on Mars. Science, 2013, 342, 355-357.	12.6	103
12	<i>SPICA</i> àê"A Large Cryogenic Infrared Space Telescope: Unveiling the Obscured Universe. Publications of the Astronomical Society of Australia, 2018, 35, .	3.4	90
13	The meteorology of Gale Crater as determined from Rover Environmental Monitoring Station observations and numerical modeling. Part II: Interpretation. Icarus, 2016, 280, 114-138.	2.5	81
14	A hot film anemometer for the Martian atmosphere. Planetary and Space Science, 2008, 56, 1169-1179.	1.7	62
15	The Mars Environmental Dynamics Analyzer, MEDA. A Suite of Environmental Sensors for the Mars 2020 Mission. Space Science Reviews, 2021, 217, 48.	8.1	57
16	The meteorology of Gale crater as determined from rover environmental monitoring station observations and numerical modeling. Part I: Comparison of model simulations with observations. Icarus, 2016, 280, 103-113.	2.5	54
17	The 2005 MARTE Robotic Drilling Experiment in RÃo Tinto, Spain: Objectives, Approach, and Results of a Simulated Mission to Search for Life in the Martian Subsurface. Astrobiology, 2008, 8, 921-945.	3.0	52
18	Gale surface wind characterization based on the Mars Science Laboratory REMS dataset. Part I: Wind retrieval and Gale's wind speeds and directions. Icarus, 2019, 319, 909-925.	2.5	45

#	Article	IF	CITATIONS
19	Gale surface wind characterization based on the Mars Science Laboratory REMS dataset. Part II: Wind probability distributions. Icarus, 2019, 319, 645-656.	2.5	36
20	Location and Setting of the Mars InSight Lander, Instruments, and Landing Site. Earth and Space Science, 2020, 7, e2020EA001248.	2.6	34
21	Origin of the ionized wind in MWC 349A. Astronomy and Astrophysics, 2014, 571, L4.	5.1	12
22	Experimental and Numerical Characterization of the Flow Around the Mars 2020 Rover. Journal of Spacecraft and Rockets, 2018, 55, 1136-1143.	1.9	6
23	SAFARI optical system architecture and design concept. Proceedings of SPIE, 2016, , .	0.8	4
24	Characterization of the flow around the Mars 2020 Rover. , 2017, , .		3
25	The optical design concept of SPICA-SAFARI. , 2012, , .		2
26	Analysis and 2D Simulation of a Hexapod Robot Leg for Remote Exploration. , 2011, , .		1
27	B-BOP: the SPICA imaging polarimeter. , 2020, , .		1
28	The optical design of a far infrared spectrometer for SPICA: grating modules evaluation., 2018,,.		1
29	Astrobiological Field Campaign to a Volcanosedimentary Mars Analogue Methane Producing Subsurface Protected Ecosystem: Imuruk Lake (Alaska). Advances in Astronomy, 2011, 2011, 1-8.	1.1	0
30	The optical design of a far infrared imaging FTS for SPICA. Proceedings of SPIE, 2014, , .	0.8	0
31	Cryogenic filter wheel design for an infrared instrument. Proceedings of SPIE, 2014, , .	0.8	0
32	ESTUDIO DE UN ROBOT CAMINANTE PARA LA EXPLORACION DE MARTE. Dyna New Technologies, 2016, 3, [11 p.]-[11 p.].	0.1	0
33	Spica-Safari reference optical design. , 2017, , .		0
34	Electro-optical characterization system develped for ATLIDCAS AIV: flat field and collimated beam injections., 2017,,.		0
35	A far infrared spectrometer for SPICA mission: optical E2E of SAFARI. , 2020, , .		0
36	The 4K focal plane unit for SPICA's SAFARI far infrared instrument. , 2020, , .		0