Dimitrios Psaltis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7676869/publications.pdf

Version: 2024-02-01

70

all docs

70 11,756 44 68
papers citations h-index g-index

70

times ranked

4171

citing authors

70

docs citations

#	Article	IF	Citations
1	The Variability of the Black Hole Image in M87 at the Dynamical Timescale. Astrophysical Journal, 2022, 925, 13.	4.5	6
2	The effects of golimumab on patient centric outcomes amongst rheumatoid arthritis patients in Greece. The GO-Q study. Rheumatology International, 2022, 42, 639-650.	3.0	0
3	Brightness Asymmetry of Black Hole Images as a Probe of Observer Inclination. Astrophysical Journal, 2022, 924, 46.	4.5	8
4	MeqSilhouette v2: spectrally resolved polarimetric synthetic data generation for the event horizon telescope. Monthly Notices of the Royal Astronomical Society, 2022, 512, 490-504.	4.4	7
5	Markov Chains for Horizons MARCH. I. Identifying Biases in Fitting Theoretical Models to Event Horizon Telescope Observations. Astrophysical Journal, 2022, 928, 55.	4.5	2
6	First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive Black Hole. Astrophysical Journal Letters, 2022, 930, L14.	8.3	163
7	First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric. Astrophysical Journal Letters, 2022, 930, L17.	8.3	215
8	First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multiwavelength Observations, Data Processing, and Calibration. Astrophysical Journal Letters, 2022, 930, L13.	8.3	142
9	First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophysical Journal Letters, 2022, 930, L12.	8.3	568
10	Selective Dynamical Imaging of Interferometric Data. Astrophysical Journal Letters, 2022, 930, L18.	8.3	21
11	Millimeter Light Curves of Sagittarius A* Observed during the 2017 Event Horizon Telescope Campaign. Astrophysical Journal Letters, 2022, 930, L19.	8.3	43
12	First Sagittarius A* Event Horizon Telescope Results. V. Testing Astrophysical Models of the Galactic Center Black Hole. Astrophysical Journal Letters, 2022, 930, L16.	8.3	187
13	Topological data analysis of black hole images. Physical Review D, 2022, 106, .	4.7	3
14	First M87 Event Horizon Telescope Results. VII. Polarization of the Ring. Astrophysical Journal Letters, 2021, 910, L12.	8.3	215
15	Polarimetric Properties of Event Horizon Telescope Targets from ALMA. Astrophysical Journal Letters, 2021, 910, L14.	8.3	67
16	First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon. Astrophysical Journal Letters, 2021, 910, L13.	8.3	297
17	Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign. Astrophysical Journal Letters, 2021, 911, L11.	8.3	56
18	Constraints on black-hole charges with the 2017 EHT observations of M87*. Physical Review D, 2021, 103, .	4.7	126

#	Article	IF	CITATIONS
19	Probing the black hole metric: Black hole shadows and binary black-hole inspirals. Physical Review D, 2021, 103, .	4.7	22
20	Event Horizon Telescope observations of the jet launching and collimation in Centaurus A. Nature Astronomy, 2021, 5, 1017-1028.	10.1	65
21	A Plasmoid model for the Sgr A* Flares Observed With Gravity and CHANDRA. Astrophysical Journal, 2021, 917, 8.	4.5	19
22	Gravitational Test beyond the First Post-Newtonian Order with the Shadow of the M87 Black Hole. Physical Review Letters, 2020, 125, 141104.	7.8	190
23	Verification of Radiative Transfer Schemes for the EHT. Astrophysical Journal, 2020, 897, 148.	4.5	44
24	Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution. Astronomy and Astrophysics, 2020, 640, A69.	5.1	54
25	A Parametric Model for the Shapes of Black Hole Shadows in Non-Kerr Spacetimes. Astrophysical Journal, 2020, 896, 7.	4.5	41
26	Monitoring the Morphology of M87* in 2009–2017 with the Event Horizon Telescope. Astrophysical Journal, 2020, 901, 67.	4.5	51
27	Interferometric Closure Phase Uncertainties in the Low Signal-to-noise Ratio Regime. Astronomical Journal, 2020, 159, 226.	4.7	4
28	The Event Horizon General Relativistic Magnetohydrodynamic Code Comparison Project. Astrophysical Journal, Supplement Series, 2019, 243, 26.	7.7	175
29	Testing general relativity with the Event Horizon Telescope. General Relativity and Gravitation, 2019, 51, 1.	2.0	76
30	First M87 Event Horizon Telescope Results. III. Data Processing and Calibration. Astrophysical Journal Letters, 2019, 875, L3.	8.3	519
31	First M87 Event Horizon Telescope Results. II. Array and Instrumentation. Astrophysical Journal Letters, 2019, 875, L2.	8.3	618
32	First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole. Astrophysical Journal Letters, 2019, 875, L4.	8.3	806
33	First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophysical Journal Letters, 2019, 875, L1.	8.3	2,264
34	First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. Astrophysical Journal Letters, 2019, 875, L5.	8.3	814
35	First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophysical Journal Letters, 2019, 875, L6.	8.3	897
36	Event Horizon Telescope observations as probes for quantum structure of astrophysical black holes. Physical Review D, 2018, 97, .	4.7	54

#	Article	IF	Citations
37	GRMHD Simulations of Visibility Amplitude Variability for Event Horizon Telescope Images of Sgr A*. Astrophysical Journal, 2018, 856, 163.	4.5	16
38	The Scattering and Intrinsic Structure of Sagittarius A* at Radio Wavelengths. Astrophysical Journal, 2018, 865, 104.	4.5	67
39	Detection of Intrinsic Source Structure at $\hat{a}^{1}/43$ Schwarzschild Radii with Millimeter-VLBI Observations of SAGITTARIUS A*. Astrophysical Journal, 2018, 859, 60.	4.5	67
40	Principal Component Analysis as a Tool for Characterizing Black Hole Images and Variability. Astrophysical Journal, 2018, 864, 7.	4.5	17
41	Variability in GRMHD Simulations of Sgr: Implications for EHT Closure Phase Observations. Astrophysical Journal, 2017, 844, 35.	4.5	23
42	BAYESIAN TECHNIQUES FOR COMPARING TIME-DEPENDENT GRMHD SIMULATIONS TO VARIABLE EVENT HORIZON TELESCOPE OBSERVATIONS. Astrophysical Journal, 2016, 832, 156.	4.5	26
43	PARTICLE ACCELERATION AND THE ORIGIN OF X-RAY FLARES IN GRMHD SIMULATIONS OF SGR A*. Astrophysical Journal, 2016, 826, 77.	4.5	79
44	PERSISTENT ASYMMETRIC STRUCTURE OF SAGITTARIUS A* ON EVENT HORIZON SCALES. Astrophysical Journal, 2016, 820, 90.	4.5	65
45	Testing General Relativity with Accretion-Flow Imaging of Sgr <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mi mathvariant="normal">A</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mo>*</mml:mo><td>7.8 >><td>60 mrow></td></td></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	7.8 >> <td>60 mrow></td>	60 mrow>
46	Chysical Review Letters, 2016, 117, 001101. heroic: 3D general relativistic radiative post-processor with comptonization for black hole accretion discs. Monthly Notices of the Royal Astronomical Society, 2016, 457, 608-628.	4.4	37
47	A QUANTITATIVE TEST OF THE NO-HAIR THEOREM WITH Sgr A* USING STARS, PULSARS, AND THE EVENT HORIZON TELESCOPE. Astrophysical Journal, 2016, 818, 121.	4.5	126
48	FAST VARIABILITY AND MILLIMETER/IR FLARES IN GRMHD MODELS OF Sgr A* FROM STRONG-FIELD GRAVITATIONAL LENSING. Astrophysical Journal, 2015, 812, 103.	4.5	65
49	EFFECTS OF SPOT SIZE ON NEUTRON-STAR RADIUS MEASUREMENTS FROM PULSE PROFILES. Astrophysical Journal, 2015, 811, 144.	4.5	20
50	hero – A 3D general relativistic radiative post-processor for accretion discs around black holes. Monthly Notices of the Royal Astronomical Society, 2015, 451, 1661-1681.	4.4	26
51	Resolved magnetic-field structure and variability near the event horizon of Sagittarius A*. Science, 2015, 350, 1242-1245.	12.6	176
52	THE POWER OF IMAGING: CONSTRAINING THE PLASMA PROPERTIES OF GRMHD SIMULATIONS USING EHT OBSERVATIONS OF Sgr A*. Astrophysical Journal, 2015, 799, 1.	4.5	123
53	LINKING TESTS OF GRAVITY ON ALL SCALES: FROM THE STRONG-FIELD REGIME TO COSMOLOGY. Astrophysical Journal, 2015, 802, 63.	4.5	114
54	A GENERAL RELATIVISTIC NULL HYPOTHESIS TEST WITH EVENT HORIZON TELESCOPE OBSERVATIONS OF THE BLACK HOLE SHADOW IN Sgr A*. Astrophysical Journal, 2015, 814, 115.	4.5	105

#	Article	IF	Citations
55	EVENT HORIZON TELESCOPE EVIDENCE FOR ALIGNMENT OF THE BLACK HOLE IN THE CENTER OF THE MILKY WAY WITH THE INNER STELLAR DISK. Astrophysical Journal, 2015, 798, 15.	4.5	34
56	IMAGING AN EVENT HORIZON: MITIGATION OF SCATTERING TOWARD SAGITTARIUS A*. Astrophysical Journal, 2014, 795, 134.	4.5	67
57	GRay: A MASSIVELY PARALLEL GPU-BASED CODE FOR RAY TRACING IN RELATIVISTIC SPACETIMES. Astrophysical Journal, 2013, 777, 13.	4.5	90
58	A RAY-TRACING ALGORITHM FOR SPINNING COMPACT OBJECT SPACETIMES WITH ARBITRARY QUADRUPOLE MOMENTS. I. QUASI-KERR BLACK HOLES. Astrophysical Journal, 2012, 745, 1.	4.5	115
59	MASSES OF NEARBY SUPERMASSIVE BLACK HOLES WITH VERY LONG BASELINE INTERFEROMETRY. Astrophysical Journal, 2012, 758, 30.	4.5	43
60	Sgr A*: The Optimal Testbed of Strong-Field Gravity. Journal of Physics: Conference Series, 2011, 283, 012030.	0.4	31
61	Metric for rapidly spinning black holes suitable for strong-field tests of the no-hair theorem. Physical Review D, 2011, 83, .	4.7	264
62	TESTING THE NO-HAIR THEOREM WITH OBSERVATIONS IN THE ELECTROMAGNETIC SPECTRUM. I. PROPERTIES OF A QUASI-KERR SPACETIME. Astrophysical Journal, 2010, 716, 187-197.	4.5	109
63	TESTING THE NO-HAIR THEOREM WITH OBSERVATIONS IN THE ELECTROMAGNETIC SPECTRUM. II. BLACK HOLE IMAGES. Astrophysical Journal, 2010, 718, 446-454.	4.5	297
64	Constraining parity violation in gravity with measurements of neutron-star moments of inertia. Physical Review D, 2010, 81, .	4.7	48
65	MHD SIMULATIONS OF ACCRETION ONTO Sgr A*: QUIESCENT FLUCTUATIONS, OUTBURSTS, AND QUASIPERIODICITY. Astrophysical Journal, 2009, 701, 521-534.	4.5	48
66	Kerr Black Holes Are Not Unique to General Relativity. Physical Review Letters, 2008, 100, 091101.	7.8	122
67	Probes and Tests of Strong-Field Gravity with Observations in the Electromagnetic Spectrum. Living Reviews in Relativity, $2008, 11, 9$.	26.7	272
68	Constraints on Braneworld Gravity Models from a Kinematic Limit on the Age of the Black Hole XTEJ1118+480. Physical Review Letters, 2007, 98, 181101.	7.8	25
69	Hybrid Thermalâ€Nonthermal Synchrotron Emission from Hot Accretion Flows. Astrophysical Journal, 2000, 541, 234-249.	4.5	139
70	Kerr Black Holes Are Not Unique to General Relativity. , 0, .		1