Surender Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7675869/publications.pdf Version: 2024-02-01

SUDENDED SINCH

#	Article	IF	CITATIONS
1	Haloarchaea Endowed with Phosphorus Solubilization Attribute Implicated in Phosphorus Cycle. Scientific Reports, 2015, 5, 12293.	3.3	138
2	Technological interventions for utilization of crop residues and weedy biomass for second generation bio-ethanol production. Renewable Energy, 2019, 132, 723-741.	8.9	122
3	Thermotolerant fermenting yeasts for simultaneous saccharification fermentation of lignocellulosic biomass. Electronic Journal of Biotechnology, 2016, 21, 82-92.	2.2	114
4	Assessment of bacterial diversity during composting of agricultural byproducts. BMC Microbiology, 2013, 13, 99.	3.3	108
5	Phylogenetic Diversity and Characterization of Novel and Efficient Cellulase Producing Bacterial Isolates from Various Extreme Environments. Bioscience, Biotechnology and Biochemistry, 2013, 77, 1474-1480.	1.3	84
6	A Modified Plate Assay for Rapid Screening of Potassium-Solubilizing Bacteria. Pedosphere, 2016, 26, 768-773.	4.0	66
7	Enhanced biodegradation of PAHs by microbial consortium with different amendment and their fate in in-situ condition. Journal of Environmental Management, 2016, 181, 728-736.	7.8	61
8	Comparative efficiency of different pretreatment methods on enzymatic digestibility of Parthenium sp World Journal of Microbiology and Biotechnology, 2014, 30, 55-64.	3.6	59
9	Streptomyces griseorubens mediated delignification of paddy straw for improved enzymatic saccharification yields. Bioresource Technology, 2013, 135, 12-17.	9.6	57
10	Taxonomic and functional annotation of gut bacterial communities of Eisenia foetida and Perionyx excavatus. Microbiological Research, 2015, 175, 48-56.	5.3	54
11	Bioprospecting thermotolerant ethanologenic yeasts for simultaneous saccharification and fermentation from diverse environments. Journal of Bioscience and Bioengineering, 2017, 123, 342-346.	2.2	54
12	Deciphering the Mechanisms of Endophyte-Mediated Biofortification of Fe and Zn in Wheat. Journal of Plant Growth Regulation, 2018, 37, 174-182.	5.1	53
13	Microorganisms in the Conversion of Agricultural Wastes to Compost. Proceedings of the Indian National Science Academy, 2014, 80, 473.	1.4	50
14	Improving the shelf life of fresh-cut â€~Royal Delicious' apple with edible coatings and anti-browning agents. Journal of Food Science and Technology, 2018, 55, 3767-3778.	2.8	49
15	Arabinofuranosidases: Characteristics, microbial production, and potential in waste valorization and industrial applications. Bioresource Technology, 2020, 304, 123019.	9.6	48
16	Deciphering the biochemical spectrum of novel cyanobacterium-based biofilms for use as inoculants. Biological Agriculture and Horticulture, 2013, 29, 145-158.	1.0	46
17	Optimization of Enzymatic Saccharification of Alkali Pretreated <i>Parthenium</i> sp. Using Response Surface Methodology. Enzyme Research, 2014, 2014, 1-8.	1.8	46
18	Nutritional characterization of apple as a function of genotype. Journal of Food Science and Technology, 2018, 55, 2729-2738.	2.8	45

#	Article	IF	CITATIONS
19	Spatial distribution and identification of bacteria in stressed environments capable to weather potassium aluminosilicate mineral. Brazilian Journal of Microbiology, 2020, 51, 751-764.	2.0	42
20	Biological delignification of paddy straw and Parthenium sp. using a novel micromycete Myrothecium roridum LG7 for enhanced saccharification. Bioresource Technology, 2013, 135, 7-11.	9.6	40
21	Immobilization of indigenous holocellulase on iron oxide (Fe 2 O 3) nanoparticles enhanced hydrolysis of alkali pretreated paddy straw. International Journal of Biological Macromolecules, 2017, 96, 538-549.	7.5	39
22	Modulating rhizosphere colonisation, plant growth, soil nutrient availability and plant defense enzyme activity through Trichoderma viride-Azotobacter chroococcum biofilm inoculation in chickpea. Plant and Soil, 2017, 421, 157-174.	3.7	38
23	Production, purification and characterization of neutral phytase from thermotolerant Aspergillus flavus ITCC 6720. International Biodeterioration and Biodegradation, 2015, 99, 15-22.	3.9	37
24	The Contrivance of Plant Growth Promoting Microbes to Mitigate Climate Change Impact in Agriculture. Microorganisms, 2021, 9, 1841.	3.6	37
25	Effects of transgenic Bt cotton on soil fertility and biology under field conditions in subtropical inceptisol. Environmental Monitoring and Assessment, 2013, 185, 485-495.	2.7	35
26	Bioprospecting of novel thermostable β-glucosidase from Bacillus subtilis RA10 and its application in biomass hydrolysis. Biotechnology for Biofuels, 2017, 10, 246.	6.2	35
27	Effect of paddy straw burning on soil microbial dynamics in sandy loam soil of Indo-Gangetic plains. Environmental Technology and Innovation, 2019, 16, 100469.	6.1	35
28	Prospecting the Potential of Agroresidues as Substrate for Microbial Flavor Production. Frontiers in Sustainable Food Systems, 2020, 4, .	3.9	35
29	Prospecting Parthenium sp. pretreated with Trametes hirsuta, as a potential bioethanol feedstock. Biocatalysis and Agricultural Biotechnology, 2013, 2, 152-158.	3.1	31
30	Cold active holocellulase cocktail from Aspergillus niger SH3: process optimization for production and biomass hydrolysis. Journal of the Taiwan Institute of Chemical Engineers, 2015, 56, 57-66.	5.3	30
31	Malbranchea cinnamomea: A thermophilic fungal source of catalytically efficient lignocellulolytic glycosyl hydrolases and metal dependent enzymes. Bioresource Technology, 2016, 200, 55-63.	9.6	30
32	Soil metaproteomics as a tool for monitoring functional microbial communities: promises and challenges. Reviews in Environmental Science and Biotechnology, 2020, 19, 73-102.	8.1	30
33	Evaluation of secretome of highly efficient lignocellulolytic Penicillium sp. Dal 5 isolated from rhizosphere of conifers. Bioresource Technology, 2016, 216, 958-967.	9.6	28
34	Current Perspectives on Chitinolytic Enzymes and Their Agro-Industrial Applications. Biology, 2021, 10, 1319.	2.8	28
35	Attractancy potential of culturable bacteria from the gut of peach fruit fly, Bactrocera zonata (Saunders). Phytoparasitica, 2014, 42, 691-698.	1.2	27

Aqueous ozone controls decay and maintains quality attributes of strawberry (Fragaria $\hat{a} \in \mathbb{A}$ - $\hat{a} \in$

#	Article	IF	CITATIONS
37	Novel cold temperature active β-glucosidase from Pseudomonas lutea BC8 suitable for simultaneous saccharification and fermentation. RSC Advances, 2014, 4, 58108-58115.	3.6	25
38	Phosphate-Solubilizing Microorganisms. Soil Biology, 2011, , 65-84.	0.8	23
39	Molecular Detection and Environment-Specific Diversity of Glycosyl Hydrolase Family 1 β-Glucosidase in Different Habitats. Frontiers in Microbiology, 2016, 7, 1597.	3.5	22
40	Laccase Production by a Novel White-Rot Fungus Pseudolagarobasidium acaciicola LA 1 Through Solid-State Fermentation of Parthenium Biomass and Its Application in Dyes Decolorization. Waste and Biomass Valorization, 2016, 7, 1427-1435.	3.4	22
41	Influence of Endosulfan on Microbial Biomass and Soil Enzymatic Activities of a Tropical Alfisol. Bulletin of Environmental Contamination and Toxicology, 2010, 84, 351-356.	2.7	21
42	Harnessing the hydrolytic potential of phytopathogenic fungus Phoma exigua ITCC 2049 for saccharification of lignocellulosic biomass. Bioresource Technology, 2013, 150, 228-234.	9.6	21
43	Bioactive compounds and antioxidant activity of selected Indian pummelo (Citrus grandis L. Osbeck) germplasm. Scientia Horticulturae, 2018, 233, 446-454.	3.6	20
44	Feather degrading, phytostimulating, and biocontrol potential of native actinobacteria from North Eastern Indian Himalayan Region. Journal of Basic Microbiology, 2018, 58, 730-738.	3.3	18
45	Single cell oil production by a novel yeast Trichosporon mycotoxinivorans for complete and ecofriendly valorization of paddy straw. Electronic Journal of Biotechnology, 2020, 44, 60-68.	2.2	18
46	Production, optimization and evaluation of multicomponent holocellulase produced by Streptomyces sp. ssr-198. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 2379-2386.	5.3	17
47	Biodegradation of dimethyl phthalate by an entomopathogenic nematode symbiont Xenorhabdus indica strain KB-3. International Biodeterioration and Biodegradation, 2014, 89, 23-28.	3.9	17
48	Enrichment and isolation of endosulfan-degrading microorganism from tropical acid soil. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2009, 44, 663-672.	1.5	16
49	Elucidating the interactions and phytotoxicity of zinc oxide nanoparticles with agriculturally beneficial bacteria and selected crop plants. Folia Microbiologica, 2017, 62, 253-262.	2.3	16
50	Statistical Optimization of Media Components for Production of Fibrinolytic Alkaline Metalloproteases from <i>Xenorhabdus indica</i> KB-3. Biotechnology Research International, 2014, 2014, 1-11.	1.4	15
51	Unwrapping the hydrolytic system of the phytopathogenic fungus Phoma exigua by secretome analysis. Process Biochemistry, 2014, 49, 1630-1636.	3.7	15
52	Do cultural conditions induce differential protein expression: Profiling of extracellular proteome of Aspergillus terreus CM20. Microbiological Research, 2016, 192, 73-83.	5.3	15
53	Co-production of gamma amino butyric acid (GABA) and lactic acid using Lactobacillus plantarum LP-9 from agro-residues. Environmental Technology and Innovation, 2021, 23, 101650.	6.1	15
54	Polycyclic aromatic hydrocarbons (PAHs) degradation potential, surfactant production, metal resistance and enzymatic activity of two novel cellulose-degrading bacteria isolated from koala faeces. Environmental Earth Sciences, 2017, 76, 1.	2.7	14

#	Article	IF	CITATIONS
55	Valorization of jute (Corchorus sp.) biomass for bioethanol production. Biomass Conversion and Biorefinery, 2022, 12, 5209-5220.	4.6	14
56	A biorefinery approach for the production of ferulic acid from agroresidues through ferulic acid esterase of lactic acid bacteria. 3 Biotech, 2020, 10, 367.	2.2	14
57	Proteomic analysis of <i>Streptomyces</i> sp. ssrâ€198 grown on paddy straw. Journal of Basic Microbiology, 2015, 55, 790-797.	3.3	13
58	Notable mixed substrate fermentation by native Kodamaea ohmeri strains isolated from Lagenaria siceraria flowers and ethanol production on paddy straw hydrolysates. Chemistry Central Journal, 2018, 12, 8.	2.6	13
59	Multifarious activities of cellulose degrading bacteria from Koala (Phascolarctos cinereus) faeces. Journal of Animal Science and Technology, 2015, 57, 23.	2.5	12
60	Twoâ€step statistical optimization for cold active βâ€glucosidase production from <i>Pseudomonas lutea</i> BG8 and its application for improving saccharification of paddy straw. Biotechnology and Applied Biochemistry, 2016, 63, 659-668.	3.1	12
61	Phytofabricated zinc oxide nanoparticles as a nanofungicide for management of Alternaria blight of Brassica. BioMetals, 2021, 34, 1275-1293.	4.1	12
62	Magnetic Nanoparticle Immobilized Cellulase Enzyme for Saccharification of Paddy Straw. International Journal of Current Microbiology and Applied Sciences, 2018, 7, 881-893.	0.1	12
63	Optimization of fermentation condition for co-production of ethanol and 2,3-butanediol (2,3-BD) from hemicellolosic hydrolysates by <i>Klebsiella oxytoca</i> XF7. Chemical Engineering Communications, 2018, 205, 402-410.	2.6	11
64	Efficient two-step lactic acid production from cassava biomass using thermostable enzyme cocktail and lactic acid bacteria: insights from hydrolysis optimization and proteomics analysis. 3 Biotech, 2020, 10, 409.	2.2	11
65	Taxonomic and functional diversity of the culturable microbiomes of epigeic earthworms and their prospects in agriculture. Journal of Basic Microbiology, 2016, 56, 1009-1020.	3.3	10
66	Simultaneous saccharification and fermentation of alkali-pretreated corncob under optimized conditions using cold-tolerant indigenous holocellulase. Korean Journal of Chemical Engineering, 2017, 34, 773-780.	2.7	10
67	Complementary effect of thermotolerant yeast and cold active cellulase on simultaneous saccharification and fermentation for bioethanol production from rice straw. Journal of Renewable and Sustainable Energy, 2018, 10, .	2.0	9
68	Construction and screening of metagenomic library derived from soil for β-1, 4-endoglucanase gene. Biocatalysis and Agricultural Biotechnology, 2016, 5, 186-192.	3.1	8
69	Augmenting Pentose Utilization and Ethanol Production of Native Saccharomyces cerevisiae LN Using Medium Engineering and Response Surface Methodology. Frontiers in Bioengineering and Biotechnology, 2018, 6, 132.	4.1	8
70	Restoration of heavy metalâ€contaminated soil and water through biosorbents: A review of current understanding and future challenges. Physiologia Plantarum, 2021, 173, 394-417.	5.2	8
71	Extracellular Novel Metalloprotease from Xenorhabdus indica and Its Potential as an Insecticidal Agent. Journal of Microbiology and Biotechnology, 2013, 23, 1536-1543.	2.1	8
72	Bioethanol Production Scenario in India: Potential and Policy Perspective. , 2017, , 21-37.		7

5

#	Article	IF	CITATIONS
73	Mesta (<i>Hibiscus</i> spp.) – a potential feedstock for bioethanol production. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2024, 42, 2664-2677.	2.3	7
74	Improved control on decay and postharvest quality deterioration of strawberry by microbial antagonists. Indian Journal of Horticulture, 2019, 76, 502.	0.1	7
75	A new spectrophotometric method for quantification of potassium solubilized by bacterial cultures. Indian Journal of Experimental Biology, 2014, 52, 261-6.	0.0	7
76	Bioaugmentation and Biovalourization of Agro-Food and Beverage Industry Effluents. Soil Biology, 2011, , 85-106.	0.8	6
77	Evaluation of 22-1,4-Endoglucanases Produced by Bacilli Isolated from Paper and Pulp Mill Effluents Irrigated Soil. Journal of Microbiology and Biotechnology, 2014, 24, 1073-1080.	2.1	6
78	Effect of Irrigation Scheduling and Nitrogen Application on Yield, Grain Quality and Soil Microbial Activities in Direct–Seeded Rice. International Journal of Current Microbiology and Applied Sciences, 2017, 6, 2855-2860.	0.1	6
79	Potent Î ³ -amino butyric acid producing psychobioticÂLactococcus lactis LP-68 from non-rhizospheric soil of Syzygium cumini (Black plum). Archives of Microbiology, 2022, 204, 82.	2.2	6
80	Microbes in Agrowaste Management for Sustainable Agriculture. , 2012, , 127-151.		5
81	Cellulose as Potential Feedstock for Cellulase Enzyme Production: Versatility and Properties of Various Cellulosic Biomasses. , 2019, , 11-27.		5
82	Saccharification of biopretreated paddy straw with indigenous holocellulase and fermentation with Saccharomyces cerevisiae LN1 under optimized conditions. Energy, Ecology and Environment, 2016, 1, 419-429.	3.9	4
83	Rhizospheric Microbial Communities: Occurrence, Distribution, and Functions. , 2021, , 239-271.		4
84	Municipal solid waste biorefinery for sustainable production of bioenergy. , 2021, , 207-233.		4
85	An iTRAQ Based Comparative Proteomic Profiling of Thermotolerant Saccharomyces cerevisiae JRC6 in Response to High Temperature Fermentation. Current Proteomics, 2019, 16, 289-296.	0.3	4
86	Improving Yeast Strains for Pentose Hexose Co-fermentation: Successes and Hurdles. Springer Proceedings in Energy, 2016, , 23-41.	0.3	3
87	Thermophilic Fungi and Their Enzymes for Biorefineries. , 2019, , 479-502.		3
88	Halophilic bacteria mediated poly-β-hydroxybutyrate production using paddy straw as a substrate. Bioresource Technology Reports, 2022, 17, 100915.	2.7	3
89	Production of ethanol, lipid and lactic acid from mixed agrowastes hydrolysate. Natural Product Research, 2023, 37, 2575-2582.	1.8	3
90	Fungal consortium and nitrogen supplementation stimulates soil microbial communities to accelerate in situ degradation of paddy straw. Environmental Sustainability, 2022, 5, 161-171.	2.8	3

#	Article	IF	CITATIONS
91	The Role and Applications of Xyloglucan Hydrolase in Biomass Degradation/Bioconversion. Biofuel and Biorefinery Technologies, 2016, , 231-248.	0.3	2
92	Deciphering the mode of interactions of nanoparticles with mung bean (Vigna radiata L.). Israel Journal of Plant Sciences, 2017, , 1-9.	0.5	2
93	Bioprospecting of Xylanolytic Fungi Isolated from Degraded Corn Cobs for Xylooligosaccharides (XOs) Production. Journal of Pure and Applied Microbiology, 2016, 10, 2687-2696.	0.9	2
94	One-pot microbial bioconversion of wheat bran ferulic acid to biovanillin. 3 Biotech, 2021, 11, 462.	2.2	2
95	Identification and Quantification of Physicochemical and Bioactive Components from Sugar Baby Variety of Watermelon (Citrullus lanatus). Agricultural Research, 0, , 1.	1.7	1
96	Lactic Acid Bacteria for Production of Platform Chemicals: A Dark Horse in the Field of Industrial Biotechnology. Environmental and Microbial Biotechnology, 2021, , 3-25.	0.7	1
97	Effect of Pasteurization Methods on Enzyme Activities, Microbial and Sensory Evaluations in Ready to Serve Watermelon Juice (Citrullus lanatus). International Journal of Current Microbiology and Applied Sciences, 2019, 8, 2708-2717.	0.1	1
98	Effect of Irrigation Scheduling and Nitrogen Application on Yield, Grain Quality and Soil Microbial Activities in Direct–Seeded Rice. International Journal of Current Microbiology and Applied Sciences, 2017, 6, 130-135.	0.1	1
99	Green lactic acid production using low-cost renewable sources and potential applications. , 2022, , 345-365.		1
100	Microbial Biofuels: Renewable Source of Energy. , 2020, , 181-192.		1
101	Anthocyaninâ€rich fruit vinegar from Grewia and Cantaloupe fruit blends. International Journal of Food Science and Technology, 2022, 57, 4566-4574.	2.7	1
102	Running Head: Bioprospecting for Biomass Hydrolysing Fungi Bioprospecting for Superior Biomass Hydrolysing Fungi from Diverse Habitats. Journal of Biodiversity Bioprospecting and Development, 2015, 02, .	0.4	0
103	Sustainable Production of Biofuels from Weedy Biomass and Other Unconventional Lignocellulose Wastes. , 2018, , 83-116.		Ο
104	Bacterial consortium for efficient degradation of di-ethyl phthalate in soil microcosm. Environmental Sustainability, 0, , 1.	2.8	0
105	Screening and Biochemical Studies on Grape Genotypes for Powdery Mildew Infection under Sub-Tropical Conditions. Indian Journal of Agricultural Biochemistry, 2015, 28, 178.	0.0	0
106	Pretreatment and Designing Energy Crops: Technological Innovations and Prospects. Research Journal of Microbiology, 2015, 10, 557-570.	0.2	0
107	Effect of Organic and Inorganic Sources of Fertilizer on Corm Yield and Nutrient Uptake of Gladiolus. International Journal of Current Microbiology and Applied Sciences, 2019, 8, 2628-2633.	0.1	0