
Marianna V Kharlamova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7674152/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advances in tailoring the electronic properties of single-walled carbon nanotubes. Progress in Materials Science, 2016, 77, 125-211.	32.8	98
2	Structure and electronic properties of AgX (X = Cl, Br, I)-intercalated single-walled carbon nanotubes. Carbon, 2010, 48, 2708-2721.	10.3	83
3	Interaction between single walled carbon nanotube and 1D crystal in CuX@SWCNT (X=Cl, Br, I) nanostructures. Carbon, 2012, 50, 4021-4039.	10.3	71
4	Doping of single-walled carbon nanotubes controlled via chemical transformation of encapsulated nickelocene. Nanoscale, 2015, 7, 1383-1391.	5.6	60
5	Preparation and properties of single-walled nanotubes filled with inorganic compounds. Russian Chemical Reviews, 2009, 78, 833-854.	6.5	56
6	Growth and Characterization of One-Dimensional SnTe Crystals within the Single-Walled Carbon Nanotube Channels. Journal of Physical Chemistry C, 2011, 115, 3578-3586.	3.1	50
7	Acceptor doping of single-walled carbon nanotubes by encapsulation of zinc halogenides. European Physical Journal B, 2012, 85, 1.	1.5	49
8	Singleâ€walled carbon nanotubes filled with nickel halogenides: Atomic structure and doping effect. Physica Status Solidi (B): Basic Research, 2012, 249, 2328-2332.	1.5	47
9	Comparison of metallic silver and copper doping effects on single-walled carbon nanotubes. Applied Physics A: Materials Science and Processing, 2012, 109, 25-29.	2.3	45
10	New method of the directional modification of the electronic structure of single-walled carbon nanotubes by filling channels with metallic copper from a liquid phase. JETP Letters, 2012, 95, 314-319.	1.4	41
11	Donor doping of single-walled carbon nanotubes by filling of channels with silver. Journal of Experimental and Theoretical Physics, 2012, 115, 485-491.	0.9	40
12	Comparison of modification of electronic properties of single-walled carbon nanotubes filled with metal halogenide, chalcogenide, and pure metal. Applied Physics A: Materials Science and Processing, 2013, 112, 297-304.	2.3	38
13	Investigation of growth dynamics of carbon nanotubes. Beilstein Journal of Nanotechnology, 2017, 8, 826-856.	2.8	37
14	Study of the electronic structure of single-walled carbon nanotubes filled with cobalt bromide. JETP Letters, 2010, 91, 196-200.	1.4	35
15	Comparison of influence of incorporated 3d-, 4d- and 4f-metal chlorides on electronic properties of single-walled carbon nanotubes. Applied Physics A: Materials Science and Processing, 2013, 111, 725-731.	2.3	35
16	Electronic properties of pristine and modified single-walled carbon nanotubes. Physics-Uspekhi, 2013, 56, 1047-1073.	2.2	34
17	Charge transfer in single-walled carbon nanotubes filled with cadmium halogenides. Journal of Materials Science, 2013, 48, 8412-8419.	3.7	33
18	A Review of the Terahertz Conductivity and Photoconductivity of Carbon Nanotubes and Heteronanotubes. Advanced Optical Materials, 2021, 9, 2101042.	7.3	32

#	Article	IF	CITATIONS
19	Applications of Pristine and Functionalized Carbon Nanotubes, Graphene, and Graphene Nanoribbons in Biomedicine. Nanomaterials, 2021, 11, 3020.	4.1	30
20	Inner tube growth properties and electronic structure of ferrocene-filled large diameter single-walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2013, 250, 2575-2580.	1.5	29
21	Chirality-dependent growth of single-wall carbon nanotubes as revealed inside nano-test tubes. Nanoscale, 2017, 9, 7998-8006.	5.6	29
22	Applications of Filled Single-Walled Carbon Nanotubes: Progress, Challenges, and Perspectives. Nanomaterials, 2021, 11, 2863.	4.1	26
23	Chiral vector and metal catalyst-dependent growth kinetics of single-wall carbon nanotubes. Carbon, 2018, 133, 283-292.	10.3	21
24	Fermi level engineering of metallicity-sorted metallic single-walled carbon nanotubes by encapsulation of few-atom-thick crystals of silver chloride. Journal of Materials Science, 2018, 53, 13018-13029.	3.7	21
25	The formation and properties of one-dimensional FeHal2 (Hal = Cl, Br, I) nanocrystals in channels of single-walled carbon nanotubes. Nanotechnologies in Russia, 2009, 4, 634-646.	0.7	19
26	Novel approach to tailoring the electronic properties of single-walled carbon nanotubes by the encapsulation of high-melting gallium selenide using a single-step process. JETP Letters, 2013, 98, 272-277.	1.4	19
27	Adsorption of proteins in channels of carbon nanotubes: Effect of surface chemistry. Materials Express, 2013, 3, 1-10.	O.5	18
28	Rare-earth metal halogenide encapsulation-induced modifications in Raman spectra of single-walled carbon nanotubes. Applied Physics A: Materials Science and Processing, 2015, 118, 27-35.	2.3	18
29	Silver Chloride Encapsulation-Induced Modifications of Raman Modes of Metallicity-Sorted Semiconducting Single-Walled Carbon Nanotubes. Journal of Spectroscopy, 2018, 2018, 1-9.	1.3	18
30	Metal Cluster Size-Dependent Activation Energies of Growth of Single-Chirality Single-Walled Carbon Nanotubes inside Metallocene-Filled Single-Walled Carbon Nanotubes. Nanomaterials, 2021, 11, 2649.	4.1	16
31	Temperature-dependent inner tube growth and electronic structure of nickelocene-filled single-walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2015, 252, 2485-2490.	1.5	15
32	Revealing the doping effect of encapsulated lead halogenides on single-walled carbon nanotubes. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	15
33	Comparative analysis of electronic properties of tin, gallium, and bismuth chalcogenide-filled single-walled carbon nanotubes. Journal of Materials Science, 2014, 49, 8402-8411.	3.7	14
34	Characterization of the Electronic Properties of Singleâ€Walled Carbon Nanotubes Filled with an Electron Donor—Rubidium Iodide: Multifrequency Raman and Xâ€ray Photoelectron Spectroscopy Studies. Physica Status Solidi (B): Basic Research, 2019, 256, 1900209.	1.5	14
35	Electronic properties of single-walled carbon nanotubes filled with manganese halogenides. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	13
36	Inner tube growth and electronic properties of metallicity-sorted nickelocene-filled semiconducting single-walled carbon nanotubes. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	13

Marianna V Kharlamova

#	Article	IF	CITATIONS
37	Nonviral Locally Injected Magnetic Vectors for In Vivo Gene Delivery: A Review of Studies on Magnetofection. Nanomaterials, 2021, 11, 1078.	4.1	13
38	Optical properties of γ-ferric oxide nanoparticles in a mesoporous silica matrix. Technical Physics Letters, 2008, 34, 288-291.	0.7	12
39	One-Dimensional Crystals inside Single-Walled Carbon Nanotubes: Growth, Structure and Electronic Properties. , 0, , .		11
40	Experimental and theoretical studies on the electronic properties of praseodymium chloride-filled single-walled carbon nanotubes. Journal of Materials Science, 2015, 50, 5419-5430.	3.7	11
41	Comparison of Doping Levels of Singleâ€Walled Carbon Nanotubes Synthesized by Arcâ€Đischarge and Chemical Vapor Deposition Methods by Encapsulated Silver Chloride. Physica Status Solidi (B): Basic Research, 2018, 255, 1800178.	1.5	11
42	Comprehensive spectroscopic characterization of high purity metallicity-sorted single-walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2015, 252, 2512-2518.	1.5	10
43	Raman Spectroscopy Study of the Doping Effect of the Encapsulated Iron, Cobalt, and Nickel Bromides on Single-Walled Carbon Nanotubes. Journal of Spectroscopy, 2015, 2015, 1-8.	1.3	10
44	Growth dynamics of inner tubes inside cobaltocene-filled single-walled carbon nanotubes. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	10
45	Raman spectroscopy study of the doping effect of the encapsulated terbium halogenides on single-walled carbon nanotubes. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	10
46	Nickelocene-Filled Purely Metallic Single-Walled Carbon Nanotubes: Sorting and Tuning the Electronic Properties. Nanomaterials, 2021, 11, 2500.	4.1	9
47	Synthesis of nanocomposites on basis of single-walled carbon nanotubes intercalated by manganese halogenides. Journal of Physics: Conference Series, 2012, 345, 012034.	0.4	8
48	<i>In situ</i> Raman spectroscopy studies on timeâ€dependent inner tube growth in ferroceneâ€filled large diameter singleâ€walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2014, 251, 2394-2400.	1.5	8
49	Semiconducting response in singleâ€walled carbon nanotubes filled with cadmium chloride. Physica Status Solidi (B): Basic Research, 2016, 253, 2433-2439.	1.5	8
50	Separation of Nickelocene-Filled Single-Walled Carbon Nanotubes by Conductivity Type and Diameter. Physica Status Solidi (B): Basic Research, 2017, 254, 1700178.	1.5	8
51	Diameter and metal-dependent growth properties of inner tubes inside metallocene-filled single-walled carbon nanotubes. Fullerenes Nanotubes and Carbon Nanostructures, 2020, 28, 20-26.	2.1	8
52	Phase transition in nanostructured LaMnO3. JETP Letters, 2009, 89, 301-305.	1.4	7
53	Optical properties of nanostructured Î ³ iron oxide. Doklady Chemistry, 2007, 415, 176-179.	0.9	5
54	Spectroscopy of Filled Single-Walled Carbon Nanotubes. Nanomaterials, 2022, 12, 42.	4.1	5

4

#	Article	IF	CITATIONS
55	Magnetic properties of γ-iron oxide nanoparticles in a mesoporous silica matrix. JETP Letters, 2007, 85, 439-443.	1.4	4
56	Endohedral Functionalization of Metallicity-Sorted Single-Walled Carbon Nanotubes. Proceedings (mdpi), 2020, 56, .	0.2	4
57	Temperature-Dependent Growth of 36 Inner Nanotubes inside Nickelocene, Cobaltocene and Ferrocene-Filled Single-Walled Carbon Nanotubes. Nanomaterials, 2021, 11, 2984.	4.1	4
58	Multifrequency Raman spectroscopy on bulk (11,10) chirality enriched semiconducting singleâ€walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2014, 251, 2432-2436.	1.5	3
59	Tuning the Electronic Properties of Single-Walled Carbon Nanotubes by Filling with Electron Donor and Acceptor Compounds. Materials Proceedings, 2021, 4, 67.	0.2	3
60	Single-walled Carbon Nanotubes: Synthesis and Modification of the Electronic Structure. World Scientific Series on Carbon Nanoscience, 2015, , 185-229.	0.1	2
61	Study of the atomically clean InSe(0001) surface by X-ray photoelectron spectroscopy. Russian Microelectronics, 2012, 41, 521-526.	0.5	1
62	Synthesis and Properties of Single-Walled Carbon Nanotubes Filled with Metal Halogenides and Metallocenes. , 2019, , .		1