
Preston P Thakral

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/767396/publications.pdf Version: 2024-02-01

DESTON D THAKDAL

#	Article	IF	CITATIONS
1	Decoding the emotional valence of future thoughts. Cognitive Neuroscience, 2022, 13, 10-14.	1.4	2
2	Sensitivity of the hippocampus to objective but not subjective episodic memory judgments. Cognitive Neuroscience, 2022, , 1-6.	1.4	0
3	Representing the Good and Bad: fMRI signatures during the encoding of multisensory positive, negative, and neutral events. Cortex, 2022, 151, 240-258.	2.4	5
4	Divergent thinking and constructing future events: dissociating old from new ideas. Memory, 2021, 29, 729-743.	1.7	13
5	Distinct patterns of hippocampal activity associated with color and spatial source memory. Hippocampus, 2021, 31, 1039-1047.	1.9	2
6	Reinstatement of item-specific contextual details during retrieval supports recombination-related false memories. NeuroImage, 2021, 236, 118033.	4.2	16
7	Linking creativity and false memory: Common consequences of a flexible memory system. Cognition, 2021, 217, 104905.	2.2	8
8	The core episodic simulation network dissociates as a function of subjective experience and objective content. Neuropsychologia, 2020, 136, 107263.	1.6	32
9	High confidence spatial long-term memories produce greater cortical activity in males than females. Cognitive Neuroscience, 2020, 12, 1-8.	1.4	2
10	Modulation of hippocampal brain networks produces changes in episodic simulation and divergent thinking. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12729-12740.	7.1	50
11	Age-related changes in repetition suppression of neural activity during emotional future simulation. Neurobiology of Aging, 2020, 94, 287-297.	3.1	8
12	The anterior hippocampus is associated with spatial memory encoding. Brain Research, 2020, 1732, 146696.	2.2	16
13	Reinstatement of Event Details during Episodic Simulation in the Hippocampus. Cerebral Cortex, 2020, 30, 2321-2337.	2.9	25
14	Effects of age on across-participant variability of cortical reinstatement effects. NeuroImage, 2019, 191, 162-175.	4.2	15
15	Content-specific phenomenological similarity between episodic memory and simulation. Memory, 2019, 27, 417-422.	1.7	7
16	Neural Mechanisms of Episodic Retrieval Support Divergent Creative Thinking. Cerebral Cortex, 2019, 29, 150-166.	2.9	83
17	Adaptive constructive processes: An episodic specificity induction impacts false recall in the Deese-Roediger-McDermott paradigm Journal of Experimental Psychology: General, 2019, 148, 1480-1493.	2.1	14
18	Increased hippocampus to ventromedial prefrontal connectivity during the construction of episodic future events. Hippocampus, 2018, 28, 76-80.	1.9	69

PRESTON P THAKRAL

#	Article	IF	CITATIONS
19	Core Network Contributions to Remembering the Past, Imagining the Future, and Thinking Creatively. Journal of Cognitive Neuroscience, 2018, 30, 1939-1951.	2.3	54
20	Transcranial magnetic stimulation of the left angular gyrus during encoding does not impair associative memory performance. Cognitive Neuroscience, 2018, 9, 127-138.	1.4	17
21	An attention account of neural priming. Memory, 2017, 25, 856-864.	1.7	6
22	Imagining the future: The core episodic simulation network dissociates as a function of timecourse and the amount of simulated information. Cortex, 2017, 90, 12-30.	2.4	33
23	Decoding the content of recollection within the core recollection network and beyond. Cortex, 2017, 91, 101-113.	2.4	61
24	Characterizing the role of the hippocampus during episodic simulation and encoding. Hippocampus, 2017, 27, 1275-1284.	1.9	20
25	A Role for the Left Angular Gyrus in Episodic Simulation and Memory. Journal of Neuroscience, 2017, 37, 8142-8149.	3.6	138
26	Familiarity and priming are mediated by overlapping neural substrates. Brain Research, 2016, 1632, 107-118.	2.2	12
27	The hippocampus is sensitive to the mismatch in novelty between items and their contexts. Brain Research, 2015, 1602, 144-152.	2.2	23
28	Cortical reinstatement and the confidence and accuracy of source memory. Neurolmage, 2015, 109, 118-129.	4.2	51
29	The sensory timecourses associated with conscious visual item memory and source memory. Behavioural Brain Research, 2015, 290, 143-151.	2.2	10
30	Nonconscious memory for motion activates MT+. NeuroReport, 2014, 25, 1326-1330.	1.2	4
31	Conscious processing during retrieval can occur in early and late visual regions. Neuropsychologia, 2013, 51, 482-487.	1.6	18
32	A neural mechanism for aesthetic experience. NeuroReport, 2012, 23, 310-313.	1.2	41
33	Memory for motion and spatial location is mediated by contralateral and ipsilateral motion processing cortex. NeuroImage, 2011, 55, 794-800.	4.2	35
34	The neural substrates associated with inattentional blindness. Consciousness and Cognition, 2011, 20, 1768-1775.	1.5	13
35	Disruption of MT impairs motion processing. Neuroscience Letters, 2011, 490, 226-230.	2.1	13
36	Attentional inhibition mediates inattentional blindness. Consciousness and Cognition, 2010, 19, 636-643.	1.5	9

#	Article	IF	CITATIONS
37	The role of parietal cortex during sustained visual spatial attention. Brain Research, 2009, 1302, 157-166.	2.2	90