
Daniele Prevosto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7673848/publications.pdf Version: 2024-02-01

DANIELE PREVIOSTO

#	Article	IF	CITATIONS
1	Structure and Dynamics of Biobased Polyester Nanocomposites. Biomacromolecules, 2019, 20, 164-176.	5.4	10
2	Dynamics of poly(vinyl butyral) studied using dielectric spectroscopy and ¹ H NMR relaxometry. Physical Chemistry Chemical Physics, 2017, 19, 31804-31812.	2.8	5
3	A perspective on experimental findings and theoretical explanations of novel dynamics at free surface and in freestanding thin films of polystyrene. Philosophical Magazine, 2016, 96, 854-869.	1.6	11
4	Dynamics of Hyperbranched Polymers under Confinement: A Dielectric Relaxation Study. ACS Applied Materials & Interfaces, 2015, 7, 12387-12398.	8.0	41
5	Origins of the two simultaneous mechanisms causing glass transition temperature reductions in high molecular weight freestanding polymer films. Journal of Chemical Physics, 2014, 140, 074903.	3.0	15
6	Temperature Dependence of the Structural Relaxation Time in Equilibrium below the Nominal <i>T</i> _g : Results from Freestanding Polymer Films. Journal of Physical Chemistry B, 2014, 118, 5608-5614.	2.6	14
7	Plasticization in Ultrathin Polymer Films: The Role of Supporting Substrate and Annealing. Macromolecules, 2013, 46, 555-561.	4.8	49
8	Viscoelasticity of nanobubbleâ€inflated ultrathin polymer films: Justification by the coupling model. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 214-224.	2.1	39
9	Chemistry of Interfacial Interactions in a LDPE-Based Nanocomposite and Their Effect on the Nanoscale Hybrid Assembling. Macromolecules, 2013, 46, 1563-1572.	4.8	15
10	Ultrathin polymer films: Interfacial and annealing dependence of confinement effects. , 2012, , .		0
11	Many-Body Nature of Relaxation Processes in Glass-Forming Systems. Journal of Physical Chemistry Letters, 2012, 3, 735-743.	4.6	171
12	Interfacial and Annealing Effects on Primary α-Relaxation of Ultrathin Polymer Films Investigated at Nanoscale. Macromolecules, 2012, 45, 2138-2144.	4.8	46
13	Effect of Confinement on Structural Relaxation in Ultrathin Polymer Films Investigated by Local Dielectric Spectroscopy. Macromolecules, 2011, 44, 6588-6593.	4.8	37
14	The Johari–Goldstein β-relaxation of glass-forming binary mixtures. Journal of Non-Crystalline Solids, 2011, 357, 251-257.	3.1	26
15	Unravelling the detailed microstructure of a semiconducting (quasiâ€metal) soluble polymer incorporating conjugated thienylene methine sequences. Journal of Polymer Science Part A, 2011, 49, 5227-5238.	2.3	1
16	Temperature and pressure dependence of secondary process in an epoxy system. Journal of Chemical Physics, 2011, 134, 044510.	3.0	11
17	Local dielectric spectroscopy of nanocomposite materials interfaces. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, C4D11-C4D17.	1.2	37
18	Interfacial effects on the dynamics of ethylene–propylene copolymer nanocomposite with inorganic clays. Journal of Non-Crystalline Solids, 2010, 356, 568-573.	3.1	20

DANIELE PREVOSTO

#	Article	IF	CITATIONS
19	Dynamic Crossover of Water Relaxation in Aqueous Mixtures: Effect of Pressure. Journal of Physical Chemistry Letters, 2010, 1, 1170-1175.	4.6	22
20	Electrostatic force microscopy and potentiometry of realistic nanostructured systems. Journal of Applied Physics, 2009, 105, 054301.	2.5	13
21	Does the entropy and volume dependence of the structural α-relaxation originate from the Johari–Goldstein β-relaxation?. Journal of Non-Crystalline Solids, 2009, 355, 705-711.	3.1	26
22	Relation between configurational entropy and relaxation dynamics of glass-forming systems under volume and temperature reduction. Journal of Non-Crystalline Solids, 2009, 355, 753-758.	3.1	13
23	Evidences of macromolecular chains confinement of ethylene–propylene copolymer in organophilic montmorillonite nanocomposites. European Polymer Journal, 2008, 44, 1296-1308.	5.4	25
24	Interdependence of Primary and Johariâ^'Goldstein Secondary Relaxations in Glass-Forming Systems. Journal of Physical Chemistry B, 2008, 112, 4470-4473.	2.6	104
25	Guides to solving the glass transition problem. Journal of Physics Condensed Matter, 2008, 20, 244125.	1.8	22
26	New experimental evidence about secondary processes in phenylphthalein-dimethylether and 1,1′-bis(p-methoxyphenyl)cyclohexane. Journal of Chemical Physics, 2007, 127, 114507.	3.0	12
27	Relaxation dynamics intert-butylpyridine/tristyrene mixture investigated by broadband dielectric spectroscopy. Journal of Chemical Physics, 2007, 127, 174502.	3.0	27
28	Correlation of structural and Johari–Goldstein relaxations in systems vitrifying along isobaric and isothermal paths. Journal of Physics Condensed Matter, 2007, 19, 205133.	1.8	29
29	Effect of temperature and pressure on the structural (α-) and the true Johari–Goldstein (β-) relaxation in binary mixtures. Journal of Non-Crystalline Solids, 2007, 353, 4273-4277.	3.1	16
30	Applications of the rheo-dielectric technique. Journal of Non-Crystalline Solids, 2007, 353, 4267-4272.	3.1	22
31	Effect of thermodynamic history on secondary relaxation in the glassy state. Journal of Non-Crystalline Solids, 2007, 353, 4313-4317.	3.1	15
32	Secondary dynamics in glass formers: Relation with the structural dynamics and the glass transition. Journal of Non-Crystalline Solids, 2007, 353, 4278-4282.	3.1	32
33	Relation between the dispersion of α-relaxation and the time scale of β-relaxation at the glass transition. Journal of Non-Crystalline Solids, 2007, 353, 3984-3988.	3.1	28
34	Influence of a Reduced Mobility Layer on the Structural Relaxation Dynamics of Aluminum Capped Ultrathin Films of Poly(ethylene terephthalate). Langmuir, 2007, 23, 2103-2109.	3.5	83
35	Secondary dielectric relaxation in decahydroisoquinoline–cyclohexane mixture. Journal of Non-Crystalline Solids, 2006, 352, 4685-4689.	3.1	10
36	Genuine Johari–Goldstein β-relaxations in glass-forming binary mixtures. Journal of Non-Crystalline Solids, 2006, 352, 4643-4648.	3.1	45

DANIELE PREVOSTO

#	Article	IF	CITATIONS
37	Polarization fluctuations near the glass transition. Journal of Non-Crystalline Solids, 2006, 352, 4920-4927.	3.1	5
38	Two secondary modes in decahydroisoquinoline: Which one is the true Johari Goldstein process?. Journal of Chemical Physics, 2005, 122, 234506.	3.0	48
39	Effect of temperature and volume on structural relaxation time: Interpretation in terms of decrease of configurational entropy. Journal of Non-Crystalline Solids, 2005, 351, 2611-2615.	3.1	8
40	Identifying the genuine Johari–Goldstein β-relaxation by cooling, compressing, and aging small molecular glass-formers. Journal of Non-Crystalline Solids, 2005, 351, 2643-2651.	3.1	61
41	Dynamics of supercooled and glassy dipropyleneglycol dibenzoate as functions of temperature and aging: Interpretation within the coupling model framework. Journal of Chemical Physics, 2004, 120, 4808-4815.	3.0	82
42	Inter-chain and intra-chain hopping transport in conducting polymers. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 148-151.	0.8	7
43	Effect of the isobaric and isothermal reductions in excess and configurational entropies on glass-forming dynamics. Philosophical Magazine, 2004, 84, 1513-1519.	1.6	3
44	Pressure and temperature dependence of structural relaxation dynamics in polymers: a thermodynamic interpretation. Journal of Physics Condensed Matter, 2004, 16, 6597-6608.	1.8	23
45	Influence of Molecular Characteristics on Dielectric Relaxation of Propylene Glycol Oligomers. Macromolecular Symposia, 2001, 169, 147-156.	0.7	0