Derek H Arnold

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7673154/publications.pdf

Version: 2024-02-01

94 papers 2,003 citations

304743 22 h-index 289244 40 g-index

102 all docs 102 docs citations

102 times ranked

1442 citing authors

#	Article	IF	CITATIONS
1	Spatially Localized Distortions of Event Time. Current Biology, 2006, 16, 472-479.	3.9	316
2	Shifts of criteria or neural timing? The assumptions underlying timing perception studies. Consciousness and Cognition, 2011, 20, 1518-1531.	1.5	99
3	Orthogonal adaptation improves orientation discrimination. Vision Research, 2001, 41, 151-159.	1.4	92
4	Asynchronous processing in vision. Current Biology, 2001, 11, 596-600.	3.9	92
5	Visually Guided Reaching Depends on Motion Area MT+. Cerebral Cortex, 2007, 17, 2644-2649.	2.9	76
6	Visual search for a target changing in synchrony with an auditory signal. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 865-874.	2.6	73
7	Computations underlying confidence in visual perception Journal of Experimental Psychology: Human Perception and Performance, 2016, 42, 671-682.	0.9	63
8	Timing sight and sound. Vision Research, 2005, 45, 1275-1284.	1.4	56
9	Twice Upon a Time. Psychological Science, 2011, 22, 872-877.	3.3	56
10	Determinants of asynchronous processing in vision. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 579-583.	2.6	53
11	Staying focused: A functional account of perceptual suppression during binocular rivalry. Journal of Vision, 2007, 7, 7.	0.3	51
12	A paradox of temporal perception revealed by a stimulus oscillating in colour and orientation. Vision Research, 2003, 43, 2245-2253.	1.4	49
13	Motion and position coding. Vision Research, 2007, 47, 2403-2410.	1.4	47
14	Perceptual pairing of colour and motion. Vision Research, 2005, 45, 3015-3026.	1.4	46
15	Motion-Induced Blindness and Motion Streak Suppression. Current Biology, 2009, 19, 325-329.	3.9	42
16	The sliding window of audio-visual simultaneity. Journal of Vision, 2009, 9, 4-4.	0.3	31
17	Not all face aftereffects are equal. Vision Research, 2012, 64, 7-16.	1.4	30
18	Motion-induced spatial conflict. Nature, 2003, 425, 181-184.	27.8	27

#	Article	IF	CITATIONS
19	Sensorimotor temporal recalibration within and across limbs Journal of Experimental Psychology: Human Perception and Performance, 2013, 39, 1678-1689.	0.9	27
20	Why is Binocular Rivalry Uncommon? Discrepant Monocular Images in the Real World. Frontiers in Human Neuroscience, 2011, 5, 116.	2.0	26
21	Learning to reach for â€~invisible' visual input. Current Biology, 2011, 21, R493-R494.	3.9	24
22	Latency differences and the flash-lag effect. Vision Research, 2003, 43, 1829-1835.	1.4	23
23	Simple differential latencies modulate, but do not cause the flash-lag effect. Journal of Vision, 2009, 9, 4-4.	0.3	23
24	Interpreting the Temporal Dynamics of Perceptual Rivalries. Perception, 2014, 43, 1239-1248.	1.2	23
25	Binocular switch suppression: A new method for persistently rendering the visible â€~invisible'. Vision Research, 2008, 48, 994-1001.	1.4	22
26	Spatial grouping resolves ambiguity to drive temporal recalibration Journal of Experimental Psychology: Human Perception and Performance, 2011, 37, 1657-1661.	0.9	21
27	Audio-Visual Speech Timing Sensitivity Is Enhanced in Cluttered Conditions. PLoS ONE, 2011, 6, e18309.	2.5	21
28	A Roving Dual-Presentation Simultaneity-Judgment Task to Estimate the Point of Subjective Simultaneity. Frontiers in Psychology, 2016, 7, 416.	2.1	20
29	Suboptimal human multisensory cue combination. Scientific Reports, 2019, 9, 5155.	3.3	18
30	Cortical processing and perceived timing. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 2331-2336.	2.6	16
31	Perceived Size and Spatial Coding. Journal of Neuroscience, 2008, 28, 5954-5958.	3.6	16
32	Audio-Visual Speech Cue Combination. PLoS ONE, 2010, 5, e10217.	2.5	16
33	Motion-induced blindness is not tuned to retinal speed. Journal of Vision, 2008, 8, 11.	0.3	15
34	Binocular rivalry: Spreading dominance throughcomplex images. Journal of Vision, 2009, 9, 4-4.	0.3	15
35	Temporal recalibration of vision. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 535-538.	2.6	15
36	The critical events for motor-sensory temporal recalibration. Frontiers in Human Neuroscience, 2012, 6, 235.	2.0	15

#	Article	IF	CITATIONS
37	Face aftereffects involve local repulsion, not renormalization. Journal of Vision, 2015, 15, 1.	0.3	15
38	Confidence as a diagnostic tool for perceptual aftereffects. Scientific Reports, 2019, 9, 7124.	3.3	15
39	An object-centered aftereffect of a latent material property: A squishiness visual aftereffect, not causality adaptation. Journal of Vision, 2015, 15, 4.	0.3	14
40	A model-based comparison of three theories of audiovisual temporal recalibration. Cognitive Psychology, 2015, 83, 54-76.	2.2	14
41	Occipital alpha-band brain waves when the eyes are closed are shaped by ongoing visual processes. Scientific Reports, 2022, 12, 1194.	3.3	14
42	Visual Sensitivity Can Scale with Illusory Size Changes. Current Biology, 2010, 20, 841-844.	3.9	13
43	Separable temporal metrics for time perception and anticipatory actions. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 854-859.	2.6	13
44	Fear Conditioning to Subliminal Fear Relevant and Non Fear Relevant Stimuli. PLoS ONE, 2014, 9, e99332.	2.5	13
45	Perceptual confidence demonstrates trial-by-trial insight into the precision of audio–visual timing encoding. Consciousness and Cognition, 2015, 38, 107-117.	1.5	12
46	Weighted integration suggests that visual and tactile signals provide independent estimates about duration Journal of Experimental Psychology: Human Perception and Performance, 2017, 43, 868-880.	0.9	12
47	Synaesthesia and colour constancy. Cortex, 2013, 49, 1082-1088.	2.4	11
48	Bimodal sensory discrimination is finer than dual single modality discrimination. Journal of Vision, 2007, 7, 14.	0.3	10
49	Alpha band amplification during illusory jitter perception. Journal of Vision, 2008, 8, 3-3.	0.3	10
50	Precision of synesthetic color matching resembles that for recollected colors rather than physical colors Journal of Experimental Psychology: Human Perception and Performance, 2012, 38, 1078-1084.	0.9	10
51	An illusory distortion of moving form driven by motion deblurring. Vision Research, 2013, 88, 47-54.	1.4	10
52	Sharpening vision by adapting to flicker. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12556-12561.	7.1	10
53	Shape adaptation exaggerates shape differences Journal of Experimental Psychology: Human Perception and Performance, 2017, 43, 181-191.	0.9	10
54	Binocular rivalry and multi-stable perception: Independence and monocular channels. Journal of Vision, 2010, 10, 8-8.	0.3	8

#	Article	lF	CITATIONS
55	Spatiotemporal Rivalry. Psychological Science, 2010, 21, 692-699.	3.3	7
56	Reducing the size of the human physiological blind spot through training. Current Biology, 2015, 25, R747-R748.	3.9	7
57	Discrepant Integration Times for Upright and Inverted Faces. Perception, 2011, 40, 989-999.	1.2	6
58	The influence of visual motion on interceptive actions and perception. Vision Research, 2012, 60, 73-78.	1.4	6
59	Shape aftereffects reflect shape constancy operations: Appearance matters Journal of Experimental Psychology: Human Perception and Performance, 2013, 39, 616-622.	0.9	6
60	Predictable events elicit less visual and temporal information uptake in an oddball paradigm. Attention, Perception, and Psychophysics, 2020, 82, 1074-1087.	1.3	6
61	Neural correlates of subjective timing precision and confidence. Scientific Reports, 2020, 10, 3098.	3.3	6
62	Highly accurate retinotopic maps of the physiological blind spot in human visual cortex. Human Brain Mapping, 2022, 43, 5111-5125.	3.6	6
63	Visual motion modulates pattern sensitivity ahead, behind, and beside motion. Vision Research, 2014, 98, 99-106.	1.4	5
64	Time order reversals and saccades. Vision Research, 2016, 125, 23-29.	1.4	5
65	The implied motion aftereffect changes decisions, but not confidence. Attention, Perception, and Psychophysics, 2021, 83, 3047-3055.	1.3	5
66	Relative timing and perceptual asynchrony., 0,, 254-277.		5
67	Motion induced spatial conflict following binocular integration. Vision Research, 2005, 45, 2934-2942.	1.4	4
68	Why the long face? The importance of vertical image structure for biological "barcodes" underlying face recognition. Journal of Vision, 2014, 14, 25-25.	0.3	4
69	Illusory motion reversals and feature tracking analyses of movement. Journal of Experimental Psychology: Human Perception and Performance, 2014, 40, 938-947.	0.9	4
70	An observer model of tilt perception, sensitivity and confidence. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211276.	2.6	4
71	Opposing views on orthogonal adaptation: a reply to Westheimer and Gee (2002). Vision Research, 2003, 43, 717-719.	1.4	3
72	Pre-Exposure to Moving Form Enhances Static Form Sensitivity. PLoS ONE, 2009, 4, e8324.	2.5	3

#	Article	IF	Citations
73	Facial Coding is Disrupted at Equiluminance. Perception, 2013, 42, 835-848.	1.2	3
74	Evidence for tilt normalization can be explained by anisotropic orientation sensitivity. Journal of Vision, 2015, 15, 26-26.	0.3	3
75	Neural-latency noise places limits on human sensitivity to the timing of events. Cognition, 2022, 222, 105012.	2.2	3
76	Neural prediction errors depend on how an expectation was formed. Cortex, 2022, 147, 102-111.	2.4	3
77	Attentional-Tracking Acuity Is Modulated by Illusory Changes in Perceived Speed. Psychological Science, 2013, 24, 174-180.	3.3	2
78	Pink Cricket Balls May Be Visually Challenging at Sunset. I-Perception, 2017, 8, 204166951668704.	1.4	2
79	Foveal motion standstill. Vision Research, 2017, 134, 1-6.	1.4	2
80	Bidirectional Gender Face Aftereffects: Evidence Against Normative Facial Coding. Perception, 2017, 46, 119-138.	1.2	2
81	Pink Cricket Balls Through Rose-Tinted Glasses: Enhancing Interceptive Timing. I-Perception, 2017, 8, 204166951774399.	1.4	2
82	Synchronous and asynchronous perceptual bindings of colour and motion following identical stimulations. Vision Research, 2018, 146-147, 41-47.	1.4	2
83	Cricketers are not tickled pink by the new coloured ball. Journal of Science and Medicine in Sport, 2021, 24, 183-188.	1.3	2
84	The Timing of Experiences: How Far Can We Get with Simple Brain Time Models?. , 2016, , 187-201.		2
85	The perceived duration of expected events depends on how the expectation is formed. Attention, Perception, and Psychophysics, 2022, 84, 1718-1725.	1.3	2
86	Malleable temporal integration of positional information for moving objects Journal of Experimental Psychology: Human Perception and Performance, 2015, 41, 623-630.	0.9	1
87	What is learned when learning to point at "invisible―targets?. Journal of Vision, 2016, 16, 9.	0.3	1
88	Auditory and Visual Durations Load a Unitary Working-Memory Resource. Timing and Time Perception, 2020, 9, 1-38.	0.6	1
89	Is the pink ball still under review? Cricket umpires' perceptions of the pink ball for day/night matches. Journal of Science and Medicine in Sport, 2021, 24, 1166-1172.	1.3	1
90	Visual predictions, neural oscillations and naÃ-ve physics. Scientific Reports, 2021, 11, 16127.	3.3	1

#	Article	IF	CITATIONS
91	Adaptation and Perceptual Binding in Sight and Sound. , 2005, , 339-360.		1
92	Evoked neural response variability predicts poor timing precision. Journal of Vision, 2017, 17, 733.	0.3	0
93	Adaptation-induced changes to the â€~intrinsic' occipital alpha rhythm. Journal of Vision, 2019, 19, 165.	0.3	0
94	Sharpening Vision by Adapting to flicker. Journal of Vision, 2019, 19, 45.	0.3	0