
Pierre Busson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7673027/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Expression of Epsteinâ€Barr virusâ€encoded proteins in nasopharyngeal carcinoma. International Journal of Cancer, 1988, 42, 329-338.	5.1	483
2	Blood diffusion and Th1-suppressive effects of galectin-9–containing exosomes released by Epstein-Barr virus–infected nasopharyngeal carcinoma cells. Blood, 2009, 113, 1957-1966.	1.4	350
3	Exosomes released by EBV-infected nasopharyngeal carcinoma cells convey the viral Latent Membrane Protein 1 and the immunomodulatory protein galectin 9. BMC Cancer, 2006, 6, 283.	2.6	218
4	Consistent transcription of the Epstein-Barr virus LMP2 gene in nasopharyngeal carcinoma. Journal of Virology, 1992, 66, 3257-3262.	3.4	184
5	Effect of Nasopharyngeal Carcinoma-Derived Exosomes on Human Regulatory T Cells. Journal of the National Cancer Institute, 2015, 107, 363.	6.3	167
6	A Crucial Role for Kupffer Cell-Derived Galectin-9 in Regulation of T Cell Immunity in Hepatitis C Infection. PLoS ONE, 2010, 5, e9504.	2.5	161
7	Novel transcription from the Epstein-Barr virus terminal EcoRI fragment, DIJhet, in a nasopharyngeal carcinoma. Journal of Virology, 1990, 64, 4948-4956.	3.4	146
8	Profiling of Epsteinâ€Barr virusâ€encoded microRNAs in nasopharyngeal carcinoma reveals potential biomarkers and oncomirs. Cancer, 2012, 118, 698-710.	4.1	135
9	Chemotherapy induces lytic EBV replication and confers ganciclovir susceptibility to EBV-positive epithelial cell tumors. Cancer Research, 2002, 62, 1920-6.	0.9	133
10	Alterations of the p53 gene in nasopharyngeal carcinoma. Journal of Virology, 1992, 66, 3768-3775.	3.4	127
11	Significance of Plk1 regulation by miRâ€100 in human nasopharyngeal cancer. International Journal of Cancer, 2010, 126, 2036-2048.	5.1	126
12	Expression of the Epstein-Barr virus BamHI A fragment in nasopharyngeal carcinoma: evidence for a viral protein expressed in vivo. Journal of Virology, 1991, 65, 6252-6259.	3.4	120
13	EBV-associated nasopharyngeal carcinomas: from epidemiology to virus-targeting strategies. Trends in Microbiology, 2004, 12, 356-360.	7.7	119
14	Constitutive activation of distinct NF-κB signals in EBV-associated nasopharyngeal carcinoma. Journal of Pathology, 2013, 231, 311-322.	4.5	119
15	Extra-cellular release and blood diffusion of BART viral micro-RNAs produced by EBV-infected nasopharyngeal carcinoma cells. Virology Journal, 2010, 7, 271.	3.4	113
16	Establishment and characterization of new tumor xenografts and cancer cell lines from EBV-positive nasopharyngeal carcinoma. Nature Communications, 2018, 9, 4663.	12.8	106
17	LMP1-mediated glycolysis induces myeloid-derived suppressor cell expansion in nasopharyngeal carcinoma. PLoS Pathogens, 2017, 13, e1006503.	4.7	103
18	Expression of miR-487b and miR-410 encoded by 14q32.31 locus is a prognostic marker in neuroblastoma. British Journal of Cancer, 2011, 105, 1352-1361.	6.4	91

#	Article	IF	CITATIONS
19	Host–tumor interactions in nasopharyngeal carcinomas. Seminars in Cancer Biology, 2012, 22, 127-136.	9.6	81
20	Structure-based design of small-molecule inhibitors of EBNA1 DNA binding blocks Epstein-Barr virus latent infection and tumor growth. Science Translational Medicine, 2019, 11, .	12.4	72
21	Two Distinct Gb3/CD77 Signaling Pathways Leading to Apoptosis Are Triggered by Anti-Gb3/CD77 mAb and Verotoxin-1. Journal of Biological Chemistry, 2003, 278, 45200-45208.	3.4	71
22	CD44+ Cancer Stem-Like Cells in EBV-Associated Nasopharyngeal Carcinoma. PLoS ONE, 2012, 7, e52426.	2.5	69
23	Epstein-Barr virus-containing epithelial cells from nasopharyngeal carcinoma produce interleukin 1 alpha Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 6262-6266.	7.1	68
24	In Nasopharyngeal Carcinoma Cells, Epstein-Barr Virus LMP1 Interacts with Galectin 9 in Membrane Raft Elements Resistant to Simvastatin. Journal of Virology, 2005, 79, 13326-13337.	3.4	62
25	EBV latent membrane protein 1 abundance correlates with patient age but not with metastatic behavior in north African nasopharyngeal carcinomas. Virology Journal, 2005, 2, 39.	3.4	62
26	Inhibition of NOTCH3 signalling significantly enhances sensitivity to cisplatin in EBVâ€associated nasopharyngeal carcinoma. Journal of Pathology, 2012, 226, 471-481.	4.5	62
27	Impact of Exogenous Galectin-9 on Human T Cells. Journal of Biological Chemistry, 2015, 290, 16797-16811.	3.4	61
28	Combination Bcl-2 Antisense and Radiation Therapy for Nasopharyngeal Cancer. Clinical Cancer Research, 2005, 11, 8131-8144.	7.0	59
29	Cytotoxic potential despite impaired activation pathways in T lymphocytes infiltrating nasopharyngeal carcinoma. International Journal of Cancer, 1991, 47, 362-370.	5.1	55
30	Use of Adenovirus Vectors Expressing Epstein-Barr Virus (EBV) Immediate-Early Protein BZLF1 or BRLF1 To Treat EBV-Positive Tumors. Journal of Virology, 2002, 76, 10951-10959.	3.4	53
31	Galectin-9 promotes a suppressive microenvironment in human cancer by enhancing STING degradation. Oncogenesis, 2020, 9, 65.	4.9	52
32	High Concentration of the EBV Latent Membrane Protein 1 in Glycosphingolipid-Rich Complexes from both Epithelial and Lymphoid Cells. Virology, 1997, 228, 285-293.	2.4	49
33	Consistent high concentration of the viral microRNA BART17 in plasma samples from nasopharyngeal carcinoma patients - evidence of non-exosomal transport. Virology Journal, 2013, 10, 119.	3.4	47
34	EBNA1: Oncogenic Activity, Immune Evasion and Biochemical Functions Provide Targets for Novel Therapeutic Strategies against Epstein-Barr Virus- Associated Cancers. Cancers, 2018, 10, 109.	3.7	47
35	Recurrent Overexpression of c-IAP2 in EBV-Associated Nasopharyngeal Carcinomas: Critical Role in Resistance to Toll-like Receptor 3-Mediated Apoptosis. Neoplasia, 2008, 10, 1183-IN7.	5.3	45
36	Establishment of a nasopharyngeal carcinoma cell line capable of undergoing lytic Epstein–Barr virus reactivation. Laboratory Investigation, 2018, 98, 1093-1104.	3.7	45

#	Article	IF	CITATIONS
37	Identification of a novel 12p13.3 amplicon in nasopharyngeal carcinoma. Journal of Pathology, 2010, 220, 97-107.	4.5	44
38	EBVâ€encoded miRNAs target ATMâ€mediated response in nasopharyngeal carcinoma. Journal of Pathology, 2018, 244, 394-407.	4.5	44
39	Evidence of LMP1-TRAF3 interactions in glycosphingolipid-rich complexes of lymphoblastoid and nasopharyngeal carcinoma cells. , 1999, 81, 645-649.		43
40	Similar BCL-X but different BCL-2 levels in the two age groups of north African nasopharyngeal carcinomas. Cancer Detection and Prevention, 2003, 27, 250-255.	2.1	43
41	Identification of a recurrent transforming UBR5–ZNF423 fusion gene in EBV â€associated nasopharyngeal carcinoma. Journal of Pathology, 2013, 231, 158-167.	4.5	43
42	Nasopharyngeal carcinoma super-enhancer–driven ETV6 correlates with prognosis. Proceedings of the United States of America, 2017, 114, 9683-9688.	7.1	43
43	Elevated expression of ICAM1 (CD54) and minimal expression of LFA3 (CD58) in epstein-barr-virus-positive nasopharyngeal carcinoma cells. International Journal of Cancer, 1992, 50, 863-867.	5.1	39
44	miR-31 is consistently inactivated in EBV-associated nasopharyngeal carcinoma and contributes to its tumorigenesis. Molecular Cancer, 2014, 13, 184.	19.2	39
45	Epstein-Barr virus (EBV) latent membrane protein 1 increases HLA class II expression in an EBV-negative B cell line. European Journal of Immunology, 1994, 24, 1467-1470.	2.9	37
46	Somatostatin receptor 2 expression in nasopharyngeal cancer is induced by Epstein Barr virus infection: impact on prognosis, imaging and therapy. Nature Communications, 2021, 12, 117.	12.8	34
47	Treatment of Nasopharyngeal Carcinoma Cells with the Histone-Deacetylase Inhibitor Abexinostat: Cooperative Effects with Cis-platin and Radiotherapy on Patient-Derived Xenografts. PLoS ONE, 2014, 9, e91325.	2.5	34
48	Aberrant methylation of p16, DLEC1, BLU and E-cadherin gene promoters in nasopharyngeal carcinoma biopsies from Tunisian patients. Anticancer Research, 2008, 28, 2161-7.	1.1	33
49	Advanced microRNA-based cancer diagnostics using amplified time-gated FRET. Chemical Science, 2018, 9, 8046-8055.	7.4	32
50	Expression of the DNase Encoded by the BCLF5 Gene of Epstein–Barr Virus in Nasopharyngeal Carcinoma Epithelial Cells. Virology, 1996, 222, 64-74.	2.4	31
51	Radiation-induced expression of functional Fas ligand in EBV-positive human nasopharyngeal carcinoma cells. , 2000, 86, 229-237.		31
52	Efficacy of targeted FasL in nasopharyngeal carcinoma. Molecular Therapy, 2003, 8, 964-973.	8.2	29
53	Potential Utility of BimS as a Novel Apoptotic Therapeutic Molecule. Molecular Therapy, 2004, 10, 533-544.	8.2	29
54	Tollâ€like receptor 3 stimulation triggers metabolic reprogramming in pharyngeal cancer cell line through Myc, MAPK, and HIF. Molecular Carcinogenesis, 2017, 56, 1214-1226.	2.7	29

#	Article	IF	CITATIONS
55	Plasma miR-200b in ovarian carcinoma patients: distinct pattern of pre/post-treatment variation compared to CA-125 and potential for prediction of progression-free survival. Oncotarget, 2015, 6, 36815-36824.	1.8	29
56	TRAF interactions with raft-like buoyant complexes, better than TRAF rates of degradation, differentiate signaling by CD40 and EBV latent membrane protein 1. International Journal of Cancer, 2005, 113, 267-275.	5.1	28
57	Growth Transformation of Primary Epithelial Cells with a NPC-Derived Epstein–Barr Virus Strain. Virology, 2001, 288, 223-235.	2.4	27
58	A Conditionally Replicating Adenovirus for Nasopharyngeal Carcinoma Gene Therapy. Molecular Therapy, 2004, 9, 804-817.	8.2	27
59	Conventional and array-based comparative genomic hybridization analysis of nasopharyngeal carcinomas from the Mediterranean area. Cancer Genetics and Cytogenetics, 2005, 157, 140-147.	1.0	27
60	Cytogenetic studies in three xenografted nasopharyngeal carcinomas. Cancer Genetics and Cytogenetics, 1993, 66, 11-15.	1.0	25
61	Interferon \hat{I}^2 and Anti-PD-1/PD-L1 Checkpoint Blockade Cooperate in NK Cell-Mediated Killing of Nasopharyngeal Carcinoma Cells. Translational Oncology, 2019, 12, 1237-1256.	3.7	25
62	Anti-PD-1 antibody increases NK cell cytotoxicity towards nasopharyngeal carcinoma cells in the context of chemotherapy-induced upregulation of PD-1 and PD-L1. Cancer Immunology, Immunotherapy, 2021, 70, 323-336.	4.2	25
63	Absence of caspase 3 activation in neoplastic cells of nasopharyngeal carcinoma biopsies predicts rapid fatal outcome. Modern Pathology, 2005, 18, 877-885.	5.5	24
64	Stimulation of the toll-like receptor 3 promotes metabolic reprogramming in head and neck carcinoma cells. Oncotarget, 2016, 7, 82580-82593.	1.8	24
65	Poly(I:C) induces intense expression of c-IAP2 and cooperates with an IAP inhibitor in induction of apoptosis in cancer cells. BMC Cancer, 2010, 10, 327.	2.6	22
66	Interferon beta induces apoptosis in nasopharyngeal carcinoma cells <i>via</i> the TRAIL-signaling pathway. Oncotarget, 2018, 9, 14228-14250.	1.8	21
67	Imaging the Modulation of Adenoviral Kinetics and Biodistribution for Cancer Gene Therapy. Molecular Therapy, 2007, 15, 921-929.	8.2	19
68	Discrimination of the <i>V600E</i> Mutation in <i>BRAF</i> by Rolling Circle Amplification and Förster Resonance Energy Transfer. ACS Sensors, 2019, 4, 2786-2793.	7.8	19
69	Toll-like receptor 3 in Epstein-Barr virus-associated nasopharyngeal carcinomas: consistent expression and cytotoxic effects of its synthetic ligand poly(A:U) combined to a Smac-mimetic. Infectious Agents and Cancer, 2012, 7, 36.	2.6	18
70	Interferon beta increases NK cell cytotoxicity against tumor cells in patients with nasopharyngeal carcinoma via tumor necrosis factor apoptosis-inducing ligand. Cancer Immunology, Immunotherapy, 2019, 68, 1317-1329.	4.2	17
71	Apoptosis and TRAF-1 cleavage in Epstein-Barr virus-positive nasopharyngeal carcinoma cells treated with doxorubicin combined with a farnesyl-transferase inhibitor. Biochemical Pharmacology, 2003, 65, 423-433.	4.4	16
72	Efficacy of Systemically Administered Mutant Vesicular Stomatitis Virus (VSVΔ51) Combined with Radiation for Nasopharyngeal Carcinoma. Clinical Cancer Research, 2008, 14, 4891-4897.	7.0	16

#	Article	IF	CITATIONS
73	Profiling of Epstein-Barr virus-encoded microRNAs in nasopharyngeal carcinoma reveals potential biomarkers and oncomirs. Cancer, 2012, 118, 4634-4634.	4.1	16
74	Phase II trial of recombinant interferon gamma in refractory undifferentiated carcinoma of the nasopharynx. Head and Neck, 1993, 15, 115-118.	2.0	13
75	Adenovirus-p53 gene therapy in human nasopharyngeal carcinoma xenografts. Radiotherapy and Oncology, 2001, 61, 309-312.	0.6	13
76	A novel monoclonal antibody for detection of galectin-9 in tissue sections: application to human tissues infected by oncogenic viruses. Infectious Agents and Cancer, 2012, 7, 16.	2.6	13
77	Radiotherapy Combined with PD-1 Inhibition Increases NK Cell Cytotoxicity towards Nasopharyngeal Carcinoma Cells. Cells, 2021, 10, 2458.	4.1	13
78	Characterization of neutralizing antibodies reacting with the 213-224 amino-acid segment of human galectin-9. PLoS ONE, 2018, 13, e0202512.	2.5	12
79	Expression of thec-fgr related transcripts in epstein-barr virus-associated malignancies. International Journal of Cancer, 1988, 42, 29-35.	5.1	11
80	Expression of two parental imprinted miRNAs improves the risk stratification of neuroblastoma patients. Cancer Medicine, 2014, 3, 998-1009.	2.8	11
81	Structure and regulation of the Blast-2/CD23 antigen in epithelial cells from nasopharyngeal carcinoma. International Immunology, 1990, 2, 1159-1166.	4.0	10
82	Nuclear Factor-Y and Epstein Barr Virus in Nasopharyngeal Cancer. Clinical Cancer Research, 2008, 14, 984-994.	7.0	10
83	EBV+ tumors exploit tumor cell-intrinsic and -extrinsic mechanisms to produce regulatory T cell-recruiting chemokines CCL17 and CCL22. PLoS Pathogens, 2022, 18, e1010200.	4.7	10
84	Epstein-Barr Virus and the Pathogenesis of Nasopharyngeal Carcinomas. Advances in Experimental Medicine and Biology, 2013, , 42-60.	1.6	9
85	Radio-sensitization of head and neck cancer cells by a combination of poly(I:C) and cisplatin through downregulation of survivin and c-IAP2. Cellular Oncology (Dordrecht), 2019, 42, 29-40.	4.4	9
86	Emerging therapeutic targets for nasopharyngeal carcinoma: opportunities and challenges. Expert Opinion on Therapeutic Targets, 2020, 24, 545-558.	3.4	9
87	SSTR2 in Nasopharyngeal Carcinoma: Relationship with Latent EBV Infection and Potential as a Therapeutic Target. Cancers, 2021, 13, 4944.	3.7	9
88	Imaging and Modulating Antisense Microdistribution in Solid Human Xenograft Tumor Models. Clinical Cancer Research, 2007, 13, 5935-5941.	7.0	5
89	Serial transplantation unmasks galectin-9 contribution to tumor immune escape in the MB49 murine model. Scientific Reports, 2021, 11, 5227.	3.3	5
90	Tumor exosomal microRNAs thwarting anti-tumor immune responses in nasopharyngeal carcinomas. Annals of Translational Medicine, 2017, 5, 164-164.	1.7	5

#	Article	IF	CITATIONS
91	Biological characterization of two xenografts derived from human CUPs (carcinomas of unknown) Tj ETQq1 1 0.7	784314 rg 2.6	BT ₄ /Overloc
92	Detection of IgG directed against a recombinant form of Epstein-Barr virus BALF0/1 protein in patients with nasopharyngeal carcinoma. Protein Expression and Purification, 2019, 162, 44-50.	1.3	4
93	Cellular Interactions in Nasopharyngeal Carcinomas. Advances in Experimental Medicine and Biology, 2013, , 82-100.	1.6	3
94	Review: Biological and Pharmacological Basis of Cytolytic Viral Activation in EBV-Associated Nasopharyngeal Carcinoma. , 2016, , .		2
95	B-cell-derived interleukin-1. Annales De L'Institut Pasteur Immunologie, 1987, 138, 599-603.	0.8	1
96	Rapid obtention of stable, bioluminescent tumor cell lines using a tCD2-luciferase chimeric construct. BMC Biotechnology, 2011, 11, 26.	3.3	1
97	Biological Tools for NPC Population Screening and Disease Monitoring. Advances in Experimental Medicine and Biology, 2013, , 101-117.	1.6	1
98	Le point de vue du biologiste: peut-on définir les bases biologiques du « phénotype CAPI » ?. Oncologie, 2008, 10, 722-727.	0.7	0