Sergey V Ovsyannikov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7672919/publications.pdf

Version: 2024-02-01

146 papers 2,602 citations

201674 27 h-index 254184 43 g-index

154 all docs

154 docs citations

154 times ranked 2516 citing authors

#	Article	IF	CITATIONS
1	Giant Roomâ€Temperature Power Factor in <i>p</i> à€Type Thermoelectric SnSe under High Pressure. Advanced Science, 2022, 9, e2103720.	11.2	7
2	Structural Diversity of Magnetite and Products of Its Decomposition at Extreme Conditions. Inorganic Chemistry, 2022, 61, 1091-1101.	4.0	7
3	Verwey-Type Charge Ordering and Site-Selective Mott Transition in Fe ₄ O ₅ under Pressure. Journal of the American Chemical Society, 2022, 144, 10259-10269.	13.7	7
4	Colossal enhancement of the thermoelectric power factor in stress-released orthorhombic phase of SnTe. Applied Physics Letters, 2021, 118, 103903.	3.3	5
5	Discovery of Elgoresyite, (Mg,Fe)5Si2O9: Implications for Novel Iron-Magnesium Silicates in Rocky Planetary Interiors. ACS Earth and Space Chemistry, 2021, 5, 2124-2130.	2.7	6
6	Stress-controlled n–p conductivity switch based on intercalated ZrTe2. Applied Physics Letters, 2021, 119, 053103.	3.3	4
7	Structural Stability and Properties of Marokite-Type Î ³ -Mn ₃ O ₄ . Inorganic Chemistry, 2021, 60, 13440-13452.	4.0	4
8	Synthesis of Ilmenite-type Îμ-Mn2O3 and Its Properties. Inorganic Chemistry, 2021, 60, 13348-13358.	4.0	4
9	A Roomâ€Temperature Verweyâ€type Transition in Iron Oxide, Fe 5 O 6. Angewandte Chemie, 2020, 132, 5681-5685.	2.0	2
10	A Roomâ€Temperature Verweyâ€type Transition in Iron Oxide, Fe ₅ O ₆ . Angewandte Chemie - International Edition, 2020, 59, 5632-5636.	13.8	17
11	Controlling the thermoelectric power of silicon–germanium alloys in different crystalline phases by applying high pressure. CrystEngComm, 2020, 22, 5416-5435.	2.6	17
12	Innentitelbild: A Roomâ€Temperature Verweyâ€type Transition in Iron Oxide, Fe ₅ O ₆ (Angew. Chem. 14/2020). Angewandte Chemie, 2020, 132, 5450-5450.	2.0	0
13	Colossal variations in the thermopower and <i>n–p</i> conductivity switching in topological tellurides under pressure. Journal of Applied Physics, 2020, 128, .	2.5	5
14	A new (Mg0.5Fe0.53+)(Si0.5Al0.53+)O3 LiNbO3-type phase synthesized at lower mantle conditions. American Mineralogist, 2019, 104, 1213-1216.	1.9	7
15	On the Power Factor of Bismuth-Telluride-Based Alloys near Topological Phase Transitions at High Pressures. Semiconductors, 2019, 53, 732-736.	O . 5	6
16	Strategies and challenges of high-pressure methods applied to thermoelectric materials. Journal of Applied Physics, 2019, 125, .	2.5	46
17	Compressibility of two Na-rich clinopyroxenes: A synchrotron single-crystal X-ray diffraction study. American Mineralogist, 2019, 104, 905-913.	1.9	2
18	High-pressure synthesis and properties of iron oxides. Acta Crystallographica Section A: Foundations and Advances, 2019, 75, e253-e253.	0.1	0

#	Article	IF	CITATIONS
19	Stress-controlled thermoelectric module for energy harvesting and its application for the significant enhancement of the power factor of Bi ₂ Te ₃ -based thermoelectrics. Journal Physics D: Applied Physics, 2018, 51, 025501.	2.8	18
20	Pressure tuning of charge ordering in iron oxide. Nature Communications, 2018, 9, 4142.	12.8	22
21	Effect of Fe doping on structure, magnetic and electrical properties La0.7Ca0.3Mn0.5Fe0.5O3 manganite. Ceramics International, 2018, 44, 14974-14979.	4.8	25
22	Thermoelectric Properties of Compressed Titanium and Zirconium Trichalcogenides. Journal of Physical Chemistry C, 2018, 122, 14362-14372.	3.1	39
23	Spin-induced multiferroicity in the binary perovskite manganite Mn2O3. Nature Communications, 2018, 9, 2996.	12.8	38
24	Magneto-orbital texture in the perovskite modification of Mn2O3. Physical Review B, 2018, 98, .	3.2	7
25	Tuning the electronic and vibrational properties of Sn ₂ P ₂ Se ₆ and Pb ₂ P _{P_ASe_{Bolton Transactions, 2017, 46, 4245-4258.}}	3.3	17
26	Structural and Magnetic Transitions in CaCo ₃ V ₄ O ₁₂ Perovskite at Extreme Conditions. Inorganic Chemistry, 2017, 56, 6251-6263.	4.0	12
27	Dramatic Changes in Thermoelectric Power of Germanium under Pressure: Printing n–p Junctions by Applied Stress. Scientific Reports, 2017, 7, 44220.	3. 3	16
28	Charge-ordering transition in iron oxide Fe4O5 involving competing dimer and trimer formation. Nature Chemistry, 2016, 8, 501-508.	13.6	54
29	Unconventional Electronic Properties of Mg ₂ Si Thermoelectrics Revealed by Fast-Neutron-Irradiation Doping. Journal of Physical Chemistry C, 2016, 120, 9692-9701.	3.1	3
30	Thermal expansion of monogermanides of 3d-metals. Journal of Physics Condensed Matter, 2016, 28, 375401.	1.8	8
31	High-pressure, high-temperature synthesis and properties of the monoclinic phase of Y2O3. Chemical Research in Chinese Universities, 2016, 32, 545-548.	2.6	5
32	Discovery of Fe7O9: a new iron oxide with a complex monoclinic structure. Scientific Reports, 2016, 6, 32852.	3.3	50
33	Features and regularities in behavior of thermoelectric properties of rare-earth, transition, and other metals under high pressure up to 20 GPa. Journal of Applied Physics, 2015, 118, .	2.5	18
34	Structural and vibrational properties of single crystals of Scandia, Sc2O3 under high pressure. Journal of Applied Physics, 2015, 118, .	2.5	21
35	Synthesis and High-Pressure Study of Corundum-Type In ₂ O ₃ . Journal of Physical Chemistry C, 2015, 119, 29076-29087.	3.1	23
36	Electronic transport properties of $<$ i> $>$ M $<$ i> $>$ Fe $<$ sub>2 $<$ sub>As $<$ sub>2 $<$ sub>($<$ i> $>$ M $<$ i> $>$ = Ca, Eu, Sr) at ambient and high pressures up to 20 GPa. Superconductor Science and Technology, 2015, 28, 125010.	3 . 5	10

#	Article	IF	Citations
37	Enhanced power factor and high-pressure effects in (Bi,Sb)2(Te,Se)3 thermoelectrics. Applied Physics Letters, 2015, 106, .	3.3	41
38	Significant enhancement of thermoelectric properties and metallization of Al-doped Mg2Si under pressure. Journal of Applied Physics, 2014, 115 , .	2.5	34
39	Perovskites: A Hard Oxide Semiconductor with A Direct and Narrow Bandgap and Switchable p–n Electrical Conduction (Adv. Mater. 48/2014). Advanced Materials, 2014, 26, 8184-8184.	21.0	1
40	X-ray single-crystal and Raman study of knorringite, Mg3(Cr1.58Mg0.21Si0.21)Si3O12, synthesized at 16ÂGPa and 1,600°C. Physics and Chemistry of Minerals, 2014, 41, 267-272.	0.8	8
41	A Hard Oxide Semiconductor with A Direct and Narrow Bandgap and Switchable p–n Electrical Conduction. Advanced Materials, 2014, 26, 8185-8191.	21.0	44
42	Peierls distortion, magnetism, and high hardness of manganese tetraboride. Physical Review B, 2014, 89, .	3.2	53
43	Crystal structure and thermal expansion of Mn1â^'xFexGe. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2014, 70, 676-680.	1.1	15
44	Bulk Silicon Crystals with the High Boron Content, Si _{1–<i>x</i>} B _{<i>x</i>} : Two Semiconductors Form an Unusual Metal. Chemistry of Materials, 2014, 26, 5274-5281.	6.7	15
45	High-pressure behavior of structural, optical, and electronic transport properties of the golden Th2S3-type Ti2O3. Physical Review B, 2013, 88, .	3.2	24
46	Anomalous compression and new high-pressure phases of vanadium sesquioxide, V ₂ O ₃ . Journal of Physics Condensed Matter, 2013, 25, 385401.	1.8	11
47	New Antiferromagnetic Perovskite CaCo ₃ V ₄ O ₁₂ Prepared at High-Pressure and High-Temperature Conditions. Inorganic Chemistry, 2013, 52, 11703-11710.	4.0	34
48	Raman spectroscopy of ferroelectric Sn2P2S6 under high pressure up to 40 GPa: Phase transitions and metallization. Journal of Applied Physics, 2013, 113, .	2.5	19
49	Perovskiteâ€ike Mn ₂ O ₃ : A Path to New Manganites. Angewandte Chemie - International Edition, 2013, 52, 1494-1498.	13.8	96
50	Thermopower of phases and states of Si under high pressure. Proceedings of SPIE, 2013, , .	0.8	1
51	Highâ€pressure study of the thermoelectric properties of various oxides (ZnO,) Tj ETQq1 1 0.784314 rgBT /Overcompounds. Physica Status Solidi (B): Basic Research, 2013, 250, 741-745.	lock 10 Tf 1.5	50 187 Td (1 3
52	Thermoelectric Power of Different Phases and States of Silicon at High Pressure. Journal of Electronic Materials, 2013, 42, 2249-2256.	2.2	4
53	The determination of hydrogen positions in superhydrous phase B. American Mineralogist, 2013, 98, 1688-1692.	1.9	6
54	High-Pressure Treatment up to 25~GPa of Czochralski Grown Si Samples Containing Different Admixtures and Defects. Acta Physica Polonica A, 2013, 124, 244-249.	0.5	2

#	Article	IF	Citations
55	Stability of MnB2 with AlB2-type structure revealed by first-principles calculations and experiments. Applied Physics Letters, 2013, 102, .	3.3	14
56	Similar behavior of thermoelectric properties of lanthanides under strong compression up to 20 GPa. Journal of Applied Physics, 2012, 111, 112624.	2.5	13
57	"Smart―silicon: Switching between <i>p</i> eand <i>n</i> ê•and <i>n</i> eonduction under compression. Applied Physics Letters, 2012, 101, 062107, High-pressure cycling of hematite	3.3	23
58	display="inline"> <mmi:mi>1±</mmi:mi> -re <mmi:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub>O<mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow< td=""><td>3.2</td><td>17</td></mml:mrow<></mml:msub></mml:math></mmi:math>	3.2	17
59	/> <mml:mn>3</mml:mn> : Nanostructuring, <i>in situ</i> Pressure-temperature phase diagram of Ti2O3and physical properties in the golden Th2S3-type phase. Physical Review B, 2012, 86, .	3.2	22
60	Stability and breakdown of Ca13CO3 melt associated with formation of 13C-diamond in static high pressure experiments up to 43GPa and 3900K. Journal of Solid State Chemistry, 2012, 191, 102-106.	2.9	28
61	Thermoelectric properties of p-Bi2 â~ x Sb x Te3 solid solutions under pressure. Physics of the Solid State, 2012, 54, 261-266.	0.6	14
62	Analysis of Electron Mobility in Some "Problematic Materials" from Magnetoresistance Effect at High Magnetic Fields. Acta Physica Polonica A, 2012, 122, 544-547.	0.5	3
63	High-pressure high-temperature synthesis of Cr2O3and Ga2O3. High Pressure Research, 2011, 31, 23-29.	1.2	26
64	Colossal tuning of an energy gap in Sn2P2S6 under pressure. Applied Physics Letters, 2011, 99, . Ambient- and low-temperature synchrotron x-ray diffraction study of Barex mmt math	3.3	19
65	xmins:mmi="http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math	3.2	101
66	ls <mmtmrow><mmtmsub><mmtmrow ls<mmtmrow=""><mmtmrow ls<mmtmrow=""><td></td><td>1</td></mmtmrow ></mmtmrow ></mmtmsub></mmtmrow>		1
67	New high-pressure–high-temperature forms in sesquioxides. Acta Crystallographica Section A: Foundations and Advances, 2011, 67, C327-C327.	0.3	0
68	Measurement of Seebeck effect (thermoelectric power) at high pressure up to 40 GPa. Journal of Physics and Chemistry of Solids, 2010, 71, 1168-1174.	4.0	26
69	Pressure cycling of InN to 20 GPa: In situ transport properties and amorphization. Applied Physics Letters, 2010, 97, 032105.	3.3	14
70	Structural stability of a golden semiconducting orthorhombic polymorph of Ti ₂ O ₃ under high pressures and high temperatures. Journal of Physics Condensed Matter, 2010, 22, 375402.	1.8	37
71	Tuning of the stoichiometry of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mtext> Fe </mml:mtext> </mml:mrow> <mml:mrow> to y compression. Physical Review B, 2010, 81, .</mml:mrow></mml:msub></mml:mrow></mml:math>	v> ⊲n₂ ml:m	n> 1 9/mml:m
72	High-pressure thermopower technique and its application. Journal of Physics: Conference Series, 2010, 215, 012185.	0.4	5

#	ARTICLE	IF	CITATIONS
73	Raman spectroscopy of <mml:math xmins:mml="http://www.w3.org/1998/Math/Math/Math/Math/Midh/Math/Midh/Midh/Midh/Midh/Midh/Midh/Midh/Mid</td"><td>3.2</td><td>18</td></mml:math>	3.2	18
74	High-Pressure Routes in the Thermoelectricity or How One Can Improve a Performance of Thermoelectrics. Chemistry of Materials, 2010, 22, 635-647.	6.7	126
75	Boron and Boron-Rich Solids at High Pressures. NATO Science for Peace and Security Series B: Physics and Biophysics, 2010, , 241-249.	0.3	2
76	Electronic properties and phase transitions in Si, ZnSe, and GaAs under pressure cycling up to 20–30 GPa in a highâ€pressure cell. Physica Status Solidi (B): Basic Research, 2009, 246, 604-611.	1.5	9
77	Unusual B1–B2 transition in PbSe under high pressure: evidence for two intermediate phases; transport, structural, and optical properties. Physica Status Solidi (B): Basic Research, 2009, 246, 615-621.	1.5	33
78	Galvanomagnetic properties of fast neutron bombarded Fe3O4 magnetite: A case against charge ordering mechanism of the Verwey transition. Solid State Communications, 2009, 149, 759-762.	1.9	18
79	Is the Verwey transition in Fe3O4magnetite driven by a Peierls distortion?. Journal of Physics Condensed Matter, 2009, 21, 271001.	1.8	8
80	Crystal lattice and band structure of the intermediate high-pressure phase of PbSe. Journal of Physics Condensed Matter, 2009, 21, 385501.	1.8	25
81	Phase transitions from mechanical contraction: direct observation of phase-transition-related volumetric effects in ZnO, GaAs, CaCO3, and CeNi under compression up to 25 GPa. High Pressure Research, 2009, 29, 514-519.	1.2	2
82	A Raman study of high-pressure phases of lead chalcogenides PbX (X=S, Se, Te). High Pressure Research, 2009, 29, 224-229.	1.2	15
83	Pressure-induced transition in a heavy fermion YbPd2Si2. Journal of Physics and Chemistry of Solids, 2008, 69, 2301-2306.	4.0	1
84	A composite high-pressure cell with sintered diamond insets for study of thermoelectric and thermomagnetic properties in a range up to 30GPa: Application to Pr and PbTe. Journal of Physics and Chemistry of Solids, 2008, 69, 2315-2324.	4.0	28
85	Raman characterization of hydrogen ion implanted silicon: "High-dose effect�. Physica B: Condensed Matter, 2008, 403, 3424-3428.	2.7	10
86	Phase transitions in titanium diselenide intercalated with cobaltocene at high pressures of up to 20 GPa. Physics of the Solid State, 2008, 50, 941-944.	0.6	1
87	Giant improvement of thermoelectric power factor of Bi2Te3 under pressure. Journal of Applied Physics, 2008, 104, .	2.5	144
88	A new crossover in Fe3O4magnetite under pressure near 6 GPa: modification to â€~ideal' inverse cubic spinel?. Journal of Physics Condensed Matter, 2008, 20, 172201.	1.8	27
89	Transport properties of Fe ₃ O ₄ magnetite at high pressure up to 24ÂGPa: a search for crossovers. High Pressure Research, 2008, 28, 601-606.	1.2	5
90	Thermopower and phase transition in YbPd ₂ Si ₂ under ultra high pressure. Journal of Physics: Conference Series, 2008, 121, 022004.	0.4	0

#	Article	IF	CITATIONS
91	Pressure-Induced Phase Transition in Pb1-xSnxSe Studied by Raman Spectra. Journal of the Physical Society of Japan, 2007, 76, 15-16.	1.6	3
92	Pressure-tuned colossal improvement of thermoelectric efficiency of PbTe. Applied Physics Letters, 2007, 90, 122103.	3.3	106
93	High-Pressure Study of Metallocenes, $M(\hat{l}-5-C5H5)2(M = Fe, Co)$. Journal of the Physical Society of Japan, 2007, 76, 31-32.	1.6	O
94	Effect of hydrogen implantation on semiconductor–metal transition and high-pressure thermopower in Si. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 462, 343-346.	5.6	6
95	Raman spectra of (PbS)1.18(TiS2)2 misfit compound. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 462, 422-426.	5.6	16
96	Variations of high-pressure thermoelectric and mechanical properties of Si single crystals under doping with N and P–T pre-treatment. Materials Science & Diplication A: Structural Materials: Properties, Microstructure and Processing, 2007, 462, 347-350.	5.6	4
97	Thermoelectric power and phase transitions in lanthanides under pressure up to 20GPa. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 462, 427-431.	5.6	8
98	Ultrahigh-pressure effects in metallo-organics. Physica Status Solidi (B): Basic Research, 2007, 244, 418-423.	1.5	5
99	Pressure-induced insulator–metal transition in a novel layer metalloorganic structure. Physica Status Solidi (B): Basic Research, 2007, 244, 174-178.	1.5	3
100	Thermoelectric properties and phase transitions of Il–VI semiconductors at high pressure. Physica Status Solidi (B): Basic Research, 2007, 244, 437-442.	1.5	38
101	High-pressure X-ray diffraction study of ternary and non-stoichiometric PbTe and PbSe crystals. Physica Status Solidi (B): Basic Research, 2007, 244, 279-284.	1.5	22
102	Thermoelectric properties of La0.75Ca0.25MnO3 manganite at ultrahigh pressures up to 20 GPa. JETP Letters, 2007, 85, 203-207.	1.4	3
103	Observation of a new high-pressure semimetal phase of GaAs from pressure dependence of the thermopower. Journal of Physics Condensed Matter, 2006, 18, L551-L557.	1.8	15
104	Structure of the intermediate high-pressure phases of ternary lead tellurides. JETP Letters, 2006, 83, 228-232.	1.4	17
105	Features of the semiconductor-metal transition in GaAs at ultrahigh pressures: New intermediate phases. JETP Letters, 2006, 84, 21-26.	1.4	10
106	Automated portable high-pressure setup for study of phase transitions in solids. Journal of Physics and Chemistry of Solids, 2006, 67, 2203-2209.	4.0	45
107	Thermoelectric properties of hydrogen ion-irradiated silicon crystals under ultrahigh pressures of up to 20 GPa. Physics of the Solid State, 2006, 48, 47-50.	0.6	4
108	Thermoelectric properties of the Pro.8Nao.2MnO3 manganite at ultrahigh pressures of up to 20 GPa. Physics of the Solid State, 2006, 48, 1741-1745.	0.6	1

#	Article	IF	Citations
109	Micro-characterisation of Si wafers by high-pressure thermopower technique. Physica B: Condensed Matter, 2006, 376-377, 177-180.	2.7	6
110	Ultra high pressure application to organic conductors. Journal of Low Temperature Physics, 2006, 142, 409-412.	1.4	2
111	Thermoelectric study of the phase transitions in cerium at ultrahigh pressures from 0 to 20 GPa. JETP Letters, 2005, 81, 167-170.	1.4	13
112	Phase transitions in PbSe under actions of fast neutron bombardment and pressure. Journal of Physics Condensed Matter, 2005, 17, S3179-S3183.	1.8	11
113	Fast neutron bombardment induced semiconductor-metal electron transition in lead selenide. Technical Physics Letters, 2004, 30, 328-331.	0.7	4
114	Thermoelectric properties of the trigonal and orthorhombic modifications of zinc telluride. JETP Letters, 2004, 80, 35-38.	1.4	4
115	Thermoelectric properties of high-pressure silicon phases. JETP Letters, 2004, 80, 405-409.	1.4	7
116	Nernst–Ettingshausen and magnetoresistance effects in Hg1–xCdxSe single crystals in vicinity of phase transitions under hydrostatic pressure. Physica Status Solidi (B): Basic Research, 2004, 241, 3235-3241.	1.5	1
117	Influence ofP–T pre-treatment on thermopower of Czochralski-grown silicon at high pressure. Physica Status Solidi (B): Basic Research, 2004, 241, 3242-3247.	1.5	6
118	High-pressure thermopower of PbTe-based compounds. Physica Status Solidi (B): Basic Research, 2004, 241, 3231-3234.	1.5	24
119	Investigations of multiphase states in vicinity of pressure-induced phase transitions. Physica Status Solidi (B): Basic Research, 2004, 241, 3203-3209.	1.5	11
120	Raman spectra of lead chalcogenide single crystals. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 3110-3113.	0.8	25
121	Phase transitions investigation in ZnTe by thermoelectric power measurements at high pressure. Solid State Communications, 2004, 132, 333-336.	1.9	38
122	Pressure-induced phase transitions in Si observed by thermoelectric power measurements. Solid State Communications, 2004, 132, 545-549.	1.9	15
123	Thermomagnetic and thermoelectric properties of semiconductors (PbTe, PbSe) at ultrahigh pressures. Physica B: Condensed Matter, 2004, 344, 190-194.	2.7	21
124	Thermoelectric properties of Czochralski-grown silicon at high pressure up to 16ÂGPa. EPJ Applied Physics, 2004, 27, 145-148.	0.7	7
125	Application of the high-pressure thermoelectric technique for characterization of semiconductor microsamples: PbX-based compounds. Journal Physics D: Applied Physics, 2004, 37, 1151-1157.	2.8	54
126	Electronic properties of multiphase systems with varying configuration of inclusions. , 2004, 5342, 239.		2

#	Article	IF	CITATIONS
127	Thermoelectric power, magnetoresistance of lead chalcogenides in the region of phase transitions under pressure. Solid State Communications, 2003, 126, 373-378.	1.9	58
128	Thermo- and galvanomagnetic technique for semiconductors testing at high pressure up to. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 546-548.	2.7	7
129	Thermo- and galvanomagnetic measurements of semiconductors at ultrahigh pressure. Physica Status Solidi (B): Basic Research, 2003, 235, 288-292.	1.5	5
130	Semiconductor–metal transitions in lead chalcogenides at high pressure. Physica Status Solidi (B): Basic Research, 2003, 235, 521-525.	1.5	53
131	Thermoelectric power of sulphur at high pressure up to 40 GPa. Physica Status Solidi (B): Basic Research, 2003, 239, 399-404.	1.5	4
132	Thermo-and galvanomagnetic properties of lead chalcogenides at high pressures up to 20 GPa. JETP Letters, 2003, 77, 88-93.	1.4	12
133	High-pressure thermopower of sulfur. Physics of the Solid State, 2003, 45, 619-622.	0.6	1
134	High-pressure study of ternary mercury chalcogenides: phase transitions, mechanical and electrical properties. Journal Physics D: Applied Physics, 2003, 36, 2021-2026.	2.8	21
135	Measurement of thermoelectric, galvanomagnetic, and thermomagnetic effects on microsamples at ultrahigh pressure. , 2003, , .		O
136	Measurement of thermoelectric, galvanomagnetic, and thermomagnetic effects at ultrahigh pressure, , 2003, , .		0
137	Thermo- and galvanomagnetic properties of hetrophases materials of high pressure. , 2003, 4979, 582.		2
138	<title>Thermo- and galvanomagnetic investigations of semiconductors at high pressure up to 30 GPa</title> ., 2002, 4692, 235.		2
139	High Pressure Treatment of Semiconductor-Metal Heterophase Structures. Defect and Diffusion Forum, 2002, 208-209, 255-260.	0.4	1
140	Thermoelectric and galvanomagnetic investigations of VI group semiconductors Se and Te at high pressure up to 30GPa. Solid State Communications, 2002, 121, 323-327.	1.9	19
141	Thermopower of lead chalcogenides at high pressures. Physics of the Solid State, 2002, 44, 1845-1849.	0.6	34
142	High-pressure treatment and analysis of semiconductor-metal heterophase structures. , 2001, , .		0
143	Thermoelectric and galvanomagnetic properties of chalcogens (Te, Se) at high pressures up to 30 GPa. JETP Letters, 2001, 74, 486-490.	1.4	14
144	Electrical properties of (PbS)0.59TiS2 crystals at high pressure up to 20 GPa. Physics of the Solid State, 2000, 42, 1228-1230.	0.6	3

#	Article	IF	CITATIONS
145	Electrical properties of (PBS)0·59TiS2 crystals at high pressures up to 20GPa. High Pressure Research, 2000, 17, 347-353.	1.2	3
146	Galvanomagnetic properties of heterophase materials at high pressure. , 1999, , .		0