Sergey V Ovsyannikov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7672919/publications.pdf

Version: 2024-02-01

146 papers 2,602 citations

201674 27 h-index 254184 43 g-index

154 all docs

154 docs citations

154 times ranked 2516 citing authors

#	Article	IF	Citations
1	Giant improvement of thermoelectric power factor of Bi2Te3 under pressure. Journal of Applied Physics, 2008, 104, .	2.5	144
2	High-Pressure Routes in the Thermoelectricity or How One Can Improve a Performance of Thermoelectrics. Chemistry of Materials, 2010, 22, 635-647.	6.7	126
3	Pressure-tuned colossal improvement of thermoelectric efficiency of PbTe. Applied Physics Letters, 2007, 90, 122103 Ambient, and low-temperature synchrotron x-ray diffraction study of BaFe <mml:math< td=""><td>3.3</td><td>106</td></mml:math<>	3.3	106
4	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub></mml:mrow> As <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"</mml:math 	3.2	101
5	display="inline"> <mml:mrow><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mn>22O₃: A Path to New Manganites. Angewandte Chemie - International Edition, 2013, 52, 1494-1498.</mml:mn></mml:mrow></mml:msub></mml:mrow>	13.8	96
6	Thermoelectric power, magnetoresistance of lead chalcogenides in the region of phase transitions under pressure. Solid State Communications, 2003, 126, 373-378.	1.9	58
7	Application of the high-pressure thermoelectric technique for characterization of semiconductor microsamples: PbX-based compounds. Journal Physics D: Applied Physics, 2004, 37, 1151-1157.	2.8	54
8	Charge-ordering transition in iron oxide Fe4O5 involving competing dimer and trimer formation. Nature Chemistry, 2016, 8, 501-508.	13.6	54
9	Semiconductor–metal transitions in lead chalcogenides at high pressure. Physica Status Solidi (B): Basic Research, 2003, 235, 521-525.	1.5	53
10	Peierls distortion, magnetism, and high hardness of manganese tetraboride. Physical Review B, 2014, 89, .	3.2	53
11	Discovery of Fe7O9: a new iron oxide with a complex monoclinic structure. Scientific Reports, 2016, 6, 32852.	3.3	50
12	Strategies and challenges of high-pressure methods applied to thermoelectric materials. Journal of Applied Physics, 2019, 125, .	2.5	46
13	Automated portable high-pressure setup for study of phase transitions in solids. Journal of Physics and Chemistry of Solids, 2006, 67, 2203-2209.	4.0	45
14	A Hard Oxide Semiconductor with A Direct and Narrow Bandgap and Switchable p–n Electrical Conduction. Advanced Materials, 2014, 26, 8185-8191.	21.0	44
15	Enhanced power factor and high-pressure effects in (Bi,Sb)2(Te,Se)3 thermoelectrics. Applied Physics Letters, 2015, 106, .	3.3	41
16	Thermoelectric Properties of Compressed Titanium and Zirconium Trichalcogenides. Journal of Physical Chemistry C, 2018, 122, 14362-14372.	3.1	39
17	Phase transitions investigation in ZnTe by thermoelectric power measurements at high pressure. Solid State Communications, 2004, 132, 333-336.	1.9	38
18	Thermoelectric properties and phase transitions of Il–VI semiconductors at high pressure. Physica Status Solidi (B): Basic Research, 2007, 244, 437-442.	1.5	38

#	Article	IF	Citations
19	Spin-induced multiferroicity in the binary perovskite manganite Mn2O3. Nature Communications, 2018, 9, 2996.	12.8	38
20	Structural stability of a golden semiconducting orthorhombic polymorph of Ti ₂ O ₃ under high pressures and high temperatures. Journal of Physics Condensed Matter, 2010, 22, 375402.	1.8	37
21	Thermopower of lead chalcogenides at high pressures. Physics of the Solid State, 2002, 44, 1845-1849.	0.6	34
22	New Antiferromagnetic Perovskite CaCo ₃ V ₄ O ₁₂ Prepared at High-Pressure and High-Temperature Conditions. Inorganic Chemistry, 2013, 52, 11703-11710.	4.0	34
23	Significant enhancement of thermoelectric properties and metallization of Al-doped Mg2Si under pressure. Journal of Applied Physics, 2014, 115, .	2.5	34
24	Unusual B1–B2 transition in PbSe under high pressure: evidence for two intermediate phases; transport, structural, and optical properties. Physica Status Solidi (B): Basic Research, 2009, 246, 615-621.	1.5	33
25	A composite high-pressure cell with sintered diamond insets for study of thermoelectric and thermomagnetic properties in a range up to 30GPa: Application to Pr and PbTe. Journal of Physics and Chemistry of Solids, 2008, 69, 2315-2324.	4.0	28
26	Stability and breakdown of Ca13CO3 melt associated with formation of 13C-diamond in static high pressure experiments up to 43GPa and 3900K. Journal of Solid State Chemistry, 2012, 191, 102-106.	2.9	28
27	A new crossover in Fe3O4magnetite under pressure near 6 GPa: modification to â€~ideal' inverse cubic spinel?. Journal of Physics Condensed Matter, 2008, 20, 172201.	1.8	27
28	Measurement of Seebeck effect (thermoelectric power) at high pressure up to 40 GPa. Journal of Physics and Chemistry of Solids, 2010, 71, 1168-1174.	4.0	26
29	High-pressure high-temperature synthesis of Cr2O3and Ga2O3. High Pressure Research, 2011, 31, 23-29.	1.2	26
30	Raman spectra of lead chalcogenide single crystals. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 3110-3113.	0.8	25
31	Crystal lattice and band structure of the intermediate high-pressure phase of PbSe. Journal of Physics Condensed Matter, 2009, 21, 385501.	1.8	25
32	Effect of Fe doping on structure, magnetic and electrical properties La0.7Ca0.3Mn0.5Fe0.5O3 manganite. Ceramics International, 2018, 44, 14974-14979.	4.8	25
33	High-pressure thermopower of PbTe-based compounds. Physica Status Solidi (B): Basic Research, 2004, 241, 3231-3234.	1.5	24
34	High-pressure behavior of structural, optical, and electronic transport properties of the golden Th2S3-type Ti2O3. Physical Review B, 2013, 88, .	3.2	24
35	"Smart―silicon: Switching between <i>p</i> à€•and <i>n</i> â€conduction under compression. Applied Physics Letters, 2012, 101, 062107.	3.3	23
36	Synthesis and High-Pressure Study of Corundum-Type In ₂ O ₃ . Journal of Physical Chemistry C, 2015, 119, 29076-29087.	3.1	23

3

#	Article	IF	CITATIONS
37	High-pressure X-ray diffraction study of ternary and non-stoichiometric PbTe and PbSe crystals. Physica Status Solidi (B): Basic Research, 2007, 244, 279-284.	1.5	22
38	Pressure-temperature phase diagram of Ti2O3and physical properties in the golden Th2S3-type phase. Physical Review B, 2012, 86, .	3.2	22
39	Pressure tuning of charge ordering in iron oxide. Nature Communications, 2018, 9, 4142.	12.8	22
40	High-pressure study of ternary mercury chalcogenides: phase transitions, mechanical and electrical properties. Journal Physics D: Applied Physics, 2003, 36, 2021-2026.	2.8	21
41	Thermomagnetic and thermoelectric properties of semiconductors (PbTe, PbSe) at ultrahigh pressures. Physica B: Condensed Matter, 2004, 344, 190-194.	2.7	21
42	Structural and vibrational properties of single crystals of Scandia, Sc2O3 under high pressure. Journal of Applied Physics, 2015, 118, .	2.5	21
43	Thermoelectric and galvanomagnetic investigations of VI group semiconductors Se and Te at high pressure up to 30GPa. Solid State Communications, 2002, 121, 323-327.	1.9	19
44	Tuning of the stoichiometry of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>Fe</mml:mtext></mml:mrow><mml:mrow> by compression. Physical Review B, 2010, 81, .</mml:mrow></mml:msub></mml:mrow></mml:math>	ദാ 2ml:mn	> 1 9:/mml:mr
45	Colossal tuning of an energy gap in Sn2P2S6 under pressure. Applied Physics Letters, 2011, 99, .	3.3	19
46	Raman spectroscopy of ferroelectric Sn2P2S6 under high pressure up to 40 GPa: Phase transitions and metallization. Journal of Applied Physics, 2013, 113, .	2.5	19
47	Galvanomagnetic properties of fast neutron bombarded Fe3O4 magnetite: A case against charge ordering mechanism of the Verwey transition. Solid State Communications, 2009, 149, 759-762.	1.9	18
48	Raman spectroscopy of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mtext> B </mml:mtext> <mml:mrow> <mml:mn> 12 </mml:mn> <mml:mrow> <mml:msub> <mml:mtext> B </mml:mtext> <mml:mrow> <mml:mn> 12 </mml:mn> </mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	3.2	18
49	Physical Review B, 2010, 81, . Features and regularities in behavior of thermoelectric properties of rare-earth, transition, and other metals under high pressure up to 20 GPa. Journal of Applied Physics, 2015, 118, .	2.5	18
50	Stress-controlled thermoelectric module for energy harvesting and its application for the significant enhancement of the power factor of Bi ₂ Te ₃ -based thermoelectrics. Journal Physics D: Applied Physics, 2018, 51, 025501.	2.8	18
51	Structure of the intermediate high-pressure phases of ternary lead tellurides. JETP Letters, 2006, 83, 228-232 High-pressure cycling of hematite <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>1.4</td><td>17</td></mml:math>	1.4	17
52	aisplay= inline > <mmi:mi>i±</mmi:mi> -re <mmi:matn display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub>O<mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow< td=""><td>3.2</td><td>17</td></mml:mrow<></mml:msub></mml:math></mmi:matn>	3.2	17
53	/> <mml:mn>3</mml:mn> : Nanostructuring, <i>in situ</i> plectronic tiuningothe electronic and vibrational properties of Sn ₂ P ₂ Se ₆ and Pb ₂ P ₆ crystals and their metallization under high pressure. Dalton Transactions, 2017, 46, 4245-4258.	3.3	17
54	A Roomâ€Temperature Verweyâ€type Transition in Iron Oxide, Fe ₅ O ₆ . Angewandte Chemie - International Edition, 2020, 59, 5632-5636.	13.8	17

#	Article	IF	Citations
55	Controlling the thermoelectric power of silicon–germanium alloys in different crystalline phases by applying high pressure. CrystEngComm, 2020, 22, 5416-5435.	2.6	17
56	Raman spectra of (PbS)1.18(TiS2)2 misfit compound. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 462, 422-426.	5.6	16
57	Dramatic Changes in Thermoelectric Power of Germanium under Pressure: Printing n–p Junctions by Applied Stress. Scientific Reports, 2017, 7, 44220.	3.3	16
58	Pressure-induced phase transitions in Si observed by thermoelectric power measurements. Solid State Communications, 2004, 132, 545-549.	1.9	15
59	Observation of a new high-pressure semimetal phase of GaAs from pressure dependence of the thermopower. Journal of Physics Condensed Matter, 2006, 18, L551-L557.	1.8	15
60	A Raman study of high-pressure phases of lead chalcogenides PbX (X=S, Se, Te). High Pressure Research, 2009, 29, 224-229.	1.2	15
61	Crystal structure and thermal expansion of Mn1â^'xFexGe. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2014, 70, 676-680.	1.1	15
62	Bulk Silicon Crystals with the High Boron Content, Si _{1â€"<i>x</i>} B _{<i>x</i>} : Two Semiconductors Form an Unusual Metal. Chemistry of Materials, 2014, 26, 5274-5281.	6.7	15
63	Thermoelectric and galvanomagnetic properties of chalcogens (Te, Se) at high pressures up to 30 GPa. JETP Letters, 2001, 74, 486-490.	1.4	14
64	Pressure cycling of InN to 20 GPa: In situ transport properties and amorphization. Applied Physics Letters, 2010, 97, 032105.	3.3	14
65	Thermoelectric properties of p-Bi2 \hat{a} x Sb x Te3 solid solutions under pressure. Physics of the Solid State, 2012, 54, 261-266.	0.6	14
66	Stability of MnB2 with AlB2-type structure revealed by first-principles calculations and experiments. Applied Physics Letters, 2013, 102, .	3.3	14
67	Thermoelectric study of the phase transitions in cerium at ultrahigh pressures from 0 to 20 GPa. JETP Letters, 2005, 81, 167-170.	1.4	13
68	Similar behavior of thermoelectric properties of lanthanides under strong compression up to 20 GPa. Journal of Applied Physics, 2012, 111, 112624.	2.5	13
69	Thermo-and galvanomagnetic properties of lead chalcogenides at high pressures up to 20 GPa. JETP Letters, 2003, 77, 88-93.	1.4	12
70	Structural and Magnetic Transitions in CaCo ₃ V ₄ O ₁₂ Perovskite at Extreme Conditions. Inorganic Chemistry, 2017, 56, 6251-6263.	4.0	12
71	Investigations of multiphase states in vicinity of pressure-induced phase transitions. Physica Status Solidi (B): Basic Research, 2004, 241, 3203-3209.	1.5	11
72	Phase transitions in PbSe under actions of fast neutron bombardment and pressure. Journal of Physics Condensed Matter, 2005, 17, S3179-S3183.	1.8	11

#	Article	IF	CITATIONS
73	Anomalous compression and new high-pressure phases of vanadium sesquioxide, V ₂ O ₃ . Journal of Physics Condensed Matter, 2013, 25, 385401.	1.8	11
74	Features of the semiconductor-metal transition in GaAs at ultrahigh pressures: New intermediate phases. JETP Letters, 2006, 84, 21-26.	1.4	10
75	Raman characterization of hydrogen ion implanted silicon: "High-dose effect�. Physica B: Condensed Matter, 2008, 403, 3424-3428.	2.7	10
76	Electronic transport properties of $<$ i> $>$ M $<$ i> $>$ Fe $<$ sub> $>$ 2 $<$ sub>As $<$ sub> $>$ 2 $<$ sub> $>$ ($<$ i> $>$ M $<$ i> $>$ = Ca, Eu, Sr) at ambient and high pressures up to 20 GPa. Superconductor Science and Technology, 2015, 28, 125010.	3.5	10
77	Electronic properties and phase transitions in Si, ZnSe, and GaAs under pressure cycling up to 20–30 GPa in a highâ€pressure cell. Physica Status Solidi (B): Basic Research, 2009, 246, 604-611.	1.5	9
78	Thermoelectric power and phase transitions in lanthanides under pressure up to 20GPa. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 462, 427-431.	5.6	8
79	Is the Verwey transition in Fe3O4magnetite driven by a Peierls distortion?. Journal of Physics Condensed Matter, 2009, 21, 271001.	1.8	8
80	X-ray single-crystal and Raman study of knorringite, Mg3(Cr1.58Mg0.21Si0.21)Si3O12, synthesized at 16ÂGPa and 1,600°C. Physics and Chemistry of Minerals, 2014, 41, 267-272.	0.8	8
81	Thermal expansion of monogermanides of 3d-metals. Journal of Physics Condensed Matter, 2016, 28, 375401.	1.8	8
82	Thermo- and galvanomagnetic technique for semiconductors testing at high pressure up to. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 546-548.	2.7	7
83	Thermoelectric properties of high-pressure silicon phases. JETP Letters, 2004, 80, 405-409.	1.4	7
84	Thermoelectric properties of Czochralski-grown silicon at high pressure up to 16ÂGPa. EPJ Applied Physics, 2004, 27, 145-148.	0.7	7
85	Magneto-orbital texture in the perovskite modification of Mn2O3. Physical Review B, 2018, 98, .	3.2	7
86	A new (Mg0.5Fe0.53+)(Si0.5Al0.53+)O3 LiNbO3-type phase synthesized at lower mantle conditions. American Mineralogist, 2019, 104, 1213-1216.	1.9	7
87	Giant Roomâ€Temperature Power Factor in <i>p</i> àêType Thermoelectric SnSe under High Pressure. Advanced Science, 2022, 9, e2103720.	11.2	7
88	Structural Diversity of Magnetite and Products of Its Decomposition at Extreme Conditions. Inorganic Chemistry, 2022, 61, 1091-1101.	4.0	7
89	Verwey-Type Charge Ordering and Site-Selective Mott Transition in Fe ₄ O ₅ under Pressure. Journal of the American Chemical Society, 2022, 144, 10259-10269.	13.7	7
90	Influence ofP–T pre-treatment on thermopower of Czochralski-grown silicon at high pressure. Physica Status Solidi (B): Basic Research, 2004, 241, 3242-3247.	1.5	6

#	Article	IF	CITATIONS
91	Micro-characterisation of Si wafers by high-pressure thermopower technique. Physica B: Condensed Matter, 2006, 376-377, 177-180.	2.7	6
92	Effect of hydrogen implantation on semiconductor–metal transition and high-pressure thermopower in Si. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 462, 343-346.	5.6	6
93	The determination of hydrogen positions in superhydrous phase B. American Mineralogist, 2013, 98, 1688-1692.	1.9	6
94	On the Power Factor of Bismuth-Telluride-Based Alloys near Topological Phase Transitions at High Pressures. Semiconductors, 2019, 53, 732-736.	0.5	6
95	Discovery of Elgoresyite, (Mg,Fe)5Si2O9: Implications for Novel Iron-Magnesium Silicates in Rocky Planetary Interiors. ACS Earth and Space Chemistry, 2021, 5, 2124-2130.	2.7	6
96	Thermo- and galvanomagnetic measurements of semiconductors at ultrahigh pressure. Physica Status Solidi (B): Basic Research, 2003, 235, 288-292.	1.5	5
97	Ultrahigh-pressure effects in metallo-organics. Physica Status Solidi (B): Basic Research, 2007, 244, 418-423.	1.5	5
98	Transport properties of Fe ₃ O ₄ magnetite at high pressure up to 24ÂGPa: a search for crossovers. High Pressure Research, 2008, 28, 601-606.	1.2	5
99	High-pressure thermopower technique and its application. Journal of Physics: Conference Series, 2010, 215, 012185.	0.4	5
100	High-pressure, high-temperature synthesis and properties of the monoclinic phase of Y2O3. Chemical Research in Chinese Universities, 2016, 32, 545-548.	2.6	5
101	Colossal enhancement of the thermoelectric power factor in stress-released orthorhombic phase of SnTe. Applied Physics Letters, 2021, 118, 103903.	3.3	5
102	Colossal variations in the thermopower and <i>n–p</i> conductivity switching in topological tellurides under pressure. Journal of Applied Physics, 2020, 128, .	2.5	5
103	Thermoelectric power of sulphur at high pressure up to 40 GPa. Physica Status Solidi (B): Basic Research, 2003, 239, 399-404.	1.5	4
104	Fast neutron bombardment induced semiconductor-metal electron transition in lead selenide. Technical Physics Letters, 2004, 30, 328-331.	0.7	4
105	Thermoelectric properties of the trigonal and orthorhombic modifications of zinc telluride. JETP Letters, 2004, 80, 35-38.	1.4	4
106	Thermoelectric properties of hydrogen ion-irradiated silicon crystals under ultrahigh pressures of up to 20 GPa. Physics of the Solid State, 2006, 48, 47-50.	0.6	4
107	Variations of high-pressure thermoelectric and mechanical properties of Si single crystals under doping with N and P–T pre-treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 462, 347-350.	5.6	4
108	Thermoelectric Power of Different Phases and States of Silicon at High Pressure. Journal of Electronic Materials, 2013, 42, 2249-2256.	2.2	4

#	Article	IF	CITATIONS
109	Stress-controlled n–p conductivity switch based on intercalated ZrTe2. Applied Physics Letters, 2021, 119, 053103.	3.3	4
110	Structural Stability and Properties of Marokite-Type \hat{I}^3 -Mn (sub) 3 (sub) 0 (sub) 4 (lsub). Inorganic Chemistry, 2021, 60, 13440-13452.	4.0	4
111	Synthesis of Ilmenite-type Îμ-Mn2O3 and Its Properties. Inorganic Chemistry, 2021, 60, 13348-13358.	4.0	4
112	Electrical properties of (PbS)0.59TiS2 crystals at high pressure up to 20 GPa. Physics of the Solid State, 2000, 42, 1228-1230.	0.6	3
113	Electrical properties of (PBS)0·59TiS2 crystals at high pressures up to 20GPa. High Pressure Research, 2000, 17, 347-353.	1.2	3
114	Pressure-Induced Phase Transition in Pb1-xSnxSe Studied by Raman Spectra. Journal of the Physical Society of Japan, 2007, 76, 15-16.	1.6	3
115	Pressure-induced insulator–metal transition in a novel layer metalloorganic structure. Physica Status Solidi (B): Basic Research, 2007, 244, 174-178.	1.5	3
116	Thermoelectric properties of La0.75Ca0.25MnO3 manganite at ultrahigh pressures up to 20 GPa. JETP Letters, 2007, 85, 203-207.	1.4	3
117	Highâ€pressure study of the thermoelectric properties of various oxides (ZnO,) Tj ETQq1 1 0.784314 rgBT /Overlocompounds. Physica Status Solidi (B): Basic Research, 2013, 250, 741-745.	ock 10 Tf 5 1.5	50 427 Td (T
118	Unconventional Electronic Properties of Mg ₂ Si Thermoelectrics Revealed by Fast-Neutron-Irradiation Doping. Journal of Physical Chemistry C, 2016, 120, 9692-9701.	3.1	3
119	Analysis of Electron Mobility in Some "Problematic Materials" from Magnetoresistance Effect at High Magnetic Fields. Acta Physica Polonica A, 2012, 122, 544-547.	0.5	3
120	<title>Thermo- and galvanomagnetic investigations of semiconductors at high pressure up to 30 GPa</title> ., 2002, 4692, 235.		2
121	Thermo- and galvanomagnetic properties of hetrophases materials of high pressure. , 2003, 4979, 582.		2
122	Electronic properties of multiphase systems with varying configuration of inclusions. , 2004, 5342, 239.		2
123	Ultra high pressure application to organic conductors. Journal of Low Temperature Physics, 2006, 142, 409-412.	1.4	2
124	Phase transitions from mechanical contraction: direct observation of phase-transition-related volumetric effects in ZnO, GaAs, CaCO3, and CeNi under compression up to 25 GPa. High Pressure Research, 2009, 29, 514-519.	1.2	2
125	High-Pressure Treatment up to 25~GPa of Czochralski Grown Si Samples Containing Different Admixtures and Defects. Acta Physica Polonica A, 2013, 124, 244-249.	0.5	2
126	Compressibility of two Na-rich clinopyroxenes: A synchrotron single-crystal X-ray diffraction study. American Mineralogist, 2019, 104, 905-913.	1.9	2

#	Article	IF	Citations
127	A Roomâ€Temperature Verweyâ€type Transition in Iron Oxide, Fe 5 O 6. Angewandte Chemie, 2020, 132, 5681-5685.	2.0	2
128	Boron and Boron-Rich Solids at High Pressures. NATO Science for Peace and Security Series B: Physics and Biophysics, 2010, , 241-249.	0.3	2
129	High Pressure Treatment of Semiconductor-Metal Heterophase Structures. Defect and Diffusion Forum, 2002, 208-209, 255-260.	0.4	1
130	High-pressure thermopower of sulfur. Physics of the Solid State, 2003, 45, 619-622.	0.6	1
131	Nernst–Ettingshausen and magnetoresistance effects in Hg1–xCdxSe single crystals in vicinity of phase transitions under hydrostatic pressure. Physica Status Solidi (B): Basic Research, 2004, 241, 3235-3241.	1.5	1
132	Thermoelectric properties of the Pro.8Nao.2MnO3 manganite at ultrahigh pressures of up to 20 GPa. Physics of the Solid State, 2006, 48, 1741-1745.	0.6	1
133	Pressure-induced transition in a heavy fermion YbPd2Si2. Journal of Physics and Chemistry of Solids, 2008, 69, 2301-2306.	4.0	1
134	Phase transitions in titanium diselenide intercalated with cobaltocene at high pressures of up to 20 GPa. Physics of the Solid State, 2008, 50, 941-944.	0.6	1
135	Electrical and mechanical properties of multi-phase systems under external impacts., 2011,,.		1
136	Thermopower of phases and states of Si under high pressure. Proceedings of SPIE, 2013, , .	0.8	1
137	Perovskites: A Hard Oxide Semiconductor with A Direct and Narrow Bandgap and Switchable p–n Electrical Conduction (Adv. Mater. 48/2014). Advanced Materials, 2014, 26, 8184-8184.	21.0	1
138	Galvanomagnetic properties of heterophase materials at high pressure. , 1999, , .		0
139	High-pressure treatment and analysis of semiconductor-metal heterophase structures. , 2001, , .		0
140	Measurement of thermoelectric, galvanomagnetic, and thermomagnetic effects on microsamples at ultrahigh pressure. , 2003, , .		0
141	Measurement of thermoelectric, galvanomagnetic, and thermomagnetic effects at ultrahigh pressure. , 2003, , .		0
142	High-Pressure Study of Metallocenes, $M(\hat{l}\cdot 5\text{-}C5H5)2(M=Fe,Co)$. Journal of the Physical Society of Japan, 2007, 76, 31-32.	1.6	0
143	Thermopower and phase transition in YbPd ₂ Si ₂ under ultra high pressure. Journal of Physics: Conference Series, 2008, 121, 022004.	0.4	0
144	Innentitelbild: A Roomâ€Temperature Verweyâ€type Transition in Iron Oxide, Fe ₅ O ₆ (Angew. Chem. 14/2020). Angewandte Chemie, 2020, 132, 5450-5450.	2.0	0

#	Article	IF	CITATIONS
145	New high-pressure–high-temperature forms in sesquioxides. Acta Crystallographica Section A: Foundations and Advances, 2011, 67, C327-C327.	0.3	o
146	High-pressure synthesis and properties of iron oxides. Acta Crystallographica Section A: Foundations and Advances, 2019, 75, e253-e253.	0.1	0