
Ryogo Minamimoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7672542/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pilot Comparison of ⁶⁸ Ga-RM2 PET and ⁶⁸ Ga-PSMA-11 PET in Patients with Biochemically Recurrent Prostate Cancer. Journal of Nuclear Medicine, 2016, 57, 557-562.	5.0	155
2	Long fasting is effective in inhibiting physiological myocardial 18F-FDG uptake and for evaluating active lesions of cardiac sarcoidosis. EJNMMI Research, 2014, 4, 1.	2.5	118
3	Prospective Comparison of ^{99m} Tc-MDP Scintigraphy, Combined ¹⁸ F-NaF and ¹⁸ F-FDG PET/CT, and Whole-Body MRI in Patients with Breast and Prostate Cancer. Journal of Nuclear Medicine, 2015, 56, 1862-1868.	5.0	95
4	Impact of maximum Standardized Uptake Value (SUVmax) evaluated by 18-Fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (18F-FDG-PET/CT) on survival for patients with advanced renal cell carcinoma: a preliminary report. BMC Cancer, 2010, 10, 667.	2.6	89
5	A meta-analysis of 18F-Fluoride positron emission tomography for assessment of metastatic bone tumor. Annals of Nuclear Medicine, 2010, 24, 523-531.	2.2	88
6	Differentiation of Brain Tumor Recurrence from Post-Radiotherapy Necrosis with 11C-Methionine PET: Visual Assessment versus Quantitative Assessment. PLoS ONE, 2015, 10, e0132515.	2.5	80
7	The potential of FDG-PET/CT for detecting prostate cancer in patients with an elevated serum PSA level. Annals of Nuclear Medicine, 2011, 25, 21-27.	2.2	74
8	Simultaneous Whole-Body Time-of-Flight 18F-FDG PET/MRI. Clinical Nuclear Medicine, 2015, 40, 1-8.	1.3	70
9	Prospective Evaluation of ⁶⁸ Ga-RM2 PET/MRI in Patients with Biochemical Recurrence of Prostate Cancer and Negative Findings on Conventional Imaging. Journal of Nuclear Medicine, 2018, 59, 803-808.	5.0	70
10	FDG-PET for the diagnosis of fever of unknown origin: a Japanese multi-center study. Annals of Nuclear Medicine, 2011, 25, 355-364.	2.2	68
11	Early assessment by FDG-PET/CT of patients with advanced renal cell carcinoma treated with tyrosine kinase inhibitors is predictive of disease course. BMC Cancer, 2012, 12, 162.	2.6	68
12	Phase IIa clinical study of [18F]fluciclovine: efficacy and safety of a new PET tracer for brain tumors. Annals of Nuclear Medicine, 2016, 30, 608-618.	2.2	68
13	The current status of an FDG-PET cancer screening program in Japan, based on a 4-year (2006–2009) nationwide survey. Annals of Nuclear Medicine, 2013, 27, 46-57.	2.2	66
14	Utility of fluorodeoxyglucose positron emission tomography/computed tomography for early diagnosis and evaluation of disease activity of relapsing polychondritis: a case series and literature review. Rheumatology, 2014, 53, 1482-1490.	1.9	64
15	Effects of blood glucose level on FDG uptake by liver: a FDG-PET/CT study. Nuclear Medicine and Biology, 2011, 38, 347-351.	0.6	63
16	Performance profile of FDG-PET and PET/CT for cancer screening on the basis of a Japanese Nationwide Survey. Annals of Nuclear Medicine, 2007, 21, 481-498.	2.2	58
17	FDG PET/CT as a prognostic biomarker in the era of molecular-targeting therapies: max SUVmax predicts survival of patients with advanced renal cell carcinoma. BMC Cancer, 2016, 16, 67.	2.6	54
18	Clinical value of ¹⁸ F-fluoro-dexoxyglucose positron emission tomography/computed tomography in patients with adult-onset Still's disease: A seven-case series and review of the literature. Modern Rheumatology, 2014, 24, 645-650.	1.8	47

#	Article	IF	CITATIONS
19	FDG-PET of patients with suspected renal failure: standardized uptake values in normal tissues. Annals of Nuclear Medicine, 2007, 21, 217-222.	2.2	44
20	4′-[Methyl- ¹¹ C]-Thiothymidine PET/CT for Proliferation Imaging in Non–Small Cell Lung Cancer. Journal of Nuclear Medicine, 2012, 53, 199-206.	5.0	43
21	Large vessel vasculitis in elderly patients: early diagnosis and steroid-response evaluation with FDG-PET/CT and contrast-enhanced CT. Rheumatology International, 2014, 34, 1545-1554.	3.0	43
22	Biodistribution of the 18F-FPPRGD2 PET radiopharmaceutical in cancer patients: an atlas of SUV measurements. European Journal of Nuclear Medicine and Molecular Imaging, 2015, 42, 1850-1858.	6.4	43
23	Bombesin-Targeted PET of Prostate Cancer. Journal of Nuclear Medicine, 2016, 57, 67S-72S.	5.0	43
24	Present and future roles of FDC-PET/CT imaging in the management of gastrointestinal cancer: an update. Nagoya Journal of Medical Science, 2017, 79, 527-543.	0.3	43
25	Lesion-based analysis of 18F-FDG uptake and 111In-Pentetreotide uptake by neuroendocrine tumors. Annals of Nuclear Medicine, 2014, 28, 1004-1010.	2.2	42
26	Comparison of 11C-4′-thiothymidine, 11C-methionine, and 18F-FDG PET/CT for the detection of active lesions of multiple myeloma. Annals of Nuclear Medicine, 2015, 29, 224-232.	2.2	42
27	Evaluation of Wegener's granulomatosis using 18F-fluorodeoxyglucose positron emission tomography/computed tomography. Annals of Nuclear Medicine, 2013, 27, 209-216.	2.2	40
28	Diffuse Large B-Cell Lymphoma: Prospective Multicenter Comparison of Early Interim FLT PET/CT versus FDG PET/CT with IHP, EORTC, Deauville, and PERCIST Criteria for Early Therapeutic Monitoring. Radiology, 2016, 280, 220-229.	7.3	39
29	Fluorodeoxyglucose PET/CT of Arthritis in Rheumatic Diseases: A Pictorial Review. Radiographics, 2020, 40, 223-240.	3.3	38
30	18F-Sodium Fluoride PET/CT in Oncology. Clinical Nuclear Medicine, 2015, 40, e228-e231.	1.3	34
31	Radiation exposure and risk–benefit analysis in cancer screening using FDC-PET: results of a Japanese nationwide survey. Annals of Nuclear Medicine, 2011, 25, 657-666.	2.2	33
32	Prediction of EGFR and KRAS mutation in non-small cell lung cancer using quantitative 18F FDG-PET/CT metrics. Oncotarget, 2017, 8, 52792-52801.	1.8	32
33	Update on advances in molecular PET in urological oncology. Japanese Journal of Radiology, 2016, 34, 470-485.	2.4	31
34	Evaluation of Response to Multikinase Inhibitor in Metastatic Renal Cell Carcinoma by FDG PET/Contrast-Enhanced CT. Clinical Nuclear Medicine, 2010, 35, 918-923.	1.3	30
35	The early response of renal cell carcinoma to tyrosine kinase inhibitors evaluated by FDG PET/CT was not influenced by metastatic organ. BMC Cancer, 2014, 14, 390.	2.6	26
36	Improvements in PET Image Quality in Time of Flight (TOF) Simultaneous PET/MRI. Molecular Imaging and Biology, 2016, 18, 776-781.	2.6	26

#	Article	IF	CITATIONS
37	Pilot prospective evaluation of 18F-FPPRGD2 PET/CT in patients with cervical and ovarian cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2016, 43, 1047-1055.	6.4	25
38	Analysis of various malignant neoplasms detected by FDG-PET cancer screening program: based on a Japanese Nationwide Survey. Annals of Nuclear Medicine, 2011, 25, 45-54.	2.2	24
39	Value of FDC-PET/CT using unfractionated heparin for managing primary cardiac lymphoma and several key findings. Journal of Nuclear Cardiology, 2011, 18, 516-520.	2.1	24
40	The acceleration of glucose accumulation in renal cell carcinoma assessed by FDG PET/CT demonstrated acquisition of resistance to tyrosine kinase inhibitor therapy. BMC Cancer, 2017, 17, 39.	2.6	24
41	Imaging spectrum and pitfalls of 18F-fluorodeoxyglucose positron emission tomography/computed tomography in patients with tuberculosis. Japanese Journal of Radiology, 2013, 31, 511-520.	2.4	21
42	Radionuclide Imaging of Cardiac Amyloidosis and Sarcoidosis: Roles and Characteristics of Various Tracers. Radiographics, 2020, 40, 2029-2041.	3.3	20
43	Series of myocardial FDG uptake requiring considerations of myocardial abnormalities in FDG-PET/CT. Japanese Journal of Radiology, 2021, 39, 540-557.	2.4	20
44	Whole-body 18F-fluorodeoxyglucose positron emission tomography/computed tomography images before and after chemotherapy for Kaposi sarcoma and highly active antiretrovirus therapy. Japanese Journal of Radiology, 2010, 28, 759-762.	2.4	18
45	A Case of Gouty Arthritis to Tophi on 18F-FDG PET/CT Imaging. Clinical Nuclear Medicine, 2012, 37, 614-617.	1.3	18
46	Nuclear Medicine Imaging Techniques for Detection of Skeletal Metastases in Breast Cancer. PET Clinics, 2018, 13, 383-393.	3.0	16
47	A pilot study of 4â€2-[methyl-11C]-thiothymidine PET/CT for detection of regional lymph node metastasis in non-small cell lung cancer. EJNMMI Research, 2014, 4, 10.	2.5	15
48	Semiquantitative Analysis of the Biodistribution of the Combined 18F-NaF and 18F-FDG Administration for PET/CT Imaging. Journal of Nuclear Medicine, 2015, 56, 688-694.	5.0	15
49	Detection of Breast Cancer in an FDG-PET Cancer Screening Program: Results of a Nationwide Japanese Survey. Clinical Breast Cancer, 2015, 15, e139-e146.	2.4	15
50	FDG PET/CT after first molecular targeted therapy predicts survival of patients with renal cell carcinoma. Cancer Chemotherapy and Pharmacology, 2018, 81, 739-744.	2.3	15
51	Cut-off value for normal versus abnormal right-to-left shunt percentages using 99mTc-macroaggregated albumin. Nuclear Medicine Communications, 2011, 32, 936-940.	1.1	14
52	Detection of colorectal cancer and adenomas by FDG-PET cancer screening program: results based on a nationwide Japanese survey. Annals of Nuclear Medicine, 2014, 28, 212-219.	2.2	14
53	Visual Findings of ¹⁸ F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Patients with Cardiac Sarcoidosis. Internal Medicine, 2014, 53, 2041-2049.	0.7	14
54	Volumetric comparison of positron emission tomography/computed tomography using 4′-[methyl-11C]-thiothymidine with 2-deoxy-2-18F-fluoro-D-glucose in patients with advanced head and neck squamous cell carcinoma. Nuclear Medicine Communications, 2015, 36, 219-225.	1.1	14

#	Article	IF	CITATIONS
55	Simultaneous PET/MRI in the Evaluation of Breast and Prostate Cancer Using Combined Na[18F] F and [18F]FDG: a Focus on Skeletal Lesions. Molecular Imaging and Biology, 2020, 22, 397-406.	2.6	14
56	Accelerator mass spectrometry analysis of background 14C-concentrations in human blood: aiming at reference data for further microdosing studies. Annals of Nuclear Medicine, 2008, 22, 883-889.	2.2	13
57	Evaluation of a new motion correction algorithm in PET/CT. Nuclear Medicine Communications, 2016, 37, 162-170.	1.1	13
58	Significance of 11C-PIB PET/CT in cardiac amyloidosis compared with 99mTc-aprotinin scintigraphy: A pilot study. Journal of Nuclear Cardiology, 2020, 27, 202-209.	2.1	13
59	Incidental focal FDG uptake in heart is a lighthouse for considering cardiac screening. Annals of Nuclear Medicine, 2013, 27, 572-580.	2.2	12
60	Observer variation study of the assessment and diagnosis of incidental colonic FDG uptake. Annals of Nuclear Medicine, 2013, 27, 468-477.	2.2	12
61	Comparison of 11C-4DST and 18F-FDG PET/CT imaging for advanced renal cell carcinoma: preliminary study. Abdominal Radiology, 2016, 41, 521-530.	2.1	12
62	Comparison of 18F-FDG PET/CT and 67Ga-SPECT for the diagnosis of fever of unknown origin: a multicenter prospective study in Japan. Annals of Nuclear Medicine, 2021, 35, 31-46.	2.2	12
63	Clinical Role of FDG PET/CT for Methotrexate-Related Malignant Lymphoma. Clinical Nuclear Medicine, 2011, 36, 533-537.	1.3	11
64	Performance profile of a FDG-PET cancer screening program for detecting gastric cancer: results from a nationwide Japanese survey. Japanese Journal of Radiology, 2014, 32, 253-259.	2.4	11
65	Re-evaluating the potentials and limitations of (99m)Tc-aprotinin scintigraphy for amyloid imaging. American Journal of Nuclear Medicine and Molecular Imaging, 2013, 3, 261-71.	1.0	11
66	18F-FDG and 11C-4DST PET/CT for evaluating response to platinum-based doublet chemotherapy in advanced non-small cell lung cancer: a prospective study. EJNMMI Research, 2019, 9, 4.	2.5	10
67	A Case of Secondary Hemochromatosis With High Uptake of Liver in F-18 FDG PET/CT Imaging. Clinical Nuclear Medicine, 2011, 36, 606-608.	1.3	9
68	Nivolumab-Induced Periaortitis Demonstrated by FDG PET/CT. Clinical Nuclear Medicine, 2020, 45, 910-912.	1.3	9
69	High FDG Uptake on Oncocytoma Located in the Retroperitoneum Mimicking Malignancy. Clinical Nuclear Medicine, 2007, 32, 582-583.	1.3	8
70	Fluorine-18-labeled 5-fluorouracil is a useful radiotracer for differentiation of malignant tumors from inflammatory lesions. Annals of Nuclear Medicine, 2008, 22, 65-72.	2.2	8
71	Optimum emission time in deep-inspiration breath-hold PET–CT: a preliminary result. Annals of Nuclear Medicine, 2010, 24, 559-563.	2.2	8
72	18F-FDG and 11C-Methionine PET/CT Findings in a Case With Anti-NMDA (NR2B) Receptor Encephalitis. Clinical Nuclear Medicine, 2012, 37, 400-402.	1.3	8

#	Article	IF	CITATIONS
73	11C-4DST PET/CT Imaging of Cardiac Sarcoidosis. Clinical Nuclear Medicine, 2018, 43, 458-459.	1.3	8
74	Efficacy of 4′-[methyl-11C] thiothymidine PET/CT before and after neoadjuvant therapy for predicting therapeutic responses in patients with esophageal cancer: a pilot study. EJNMMI Research, 2019, 9, 10.	2.5	8
75	Current status of radioligand therapy and positron-emission tomography with prostate-specific membrane antigen. Annals of Nuclear Medicine, 2020, 34, 879-883.	2.2	8
76	Evaluation of organ-specific glucose metabolism by 18F-FDG in insulin receptor substrate-1 (IRS-1) knockout mice as a model of insulin resistance. Annals of Nuclear Medicine, 2011, 25, 755-761.	2.2	7
77	Reevaluation of FDG-PET/CT in patients with hoarseness caused by vocal cord palsy. Annals of Nuclear Medicine, 2012, 26, 405-411.	2.2	7
78	A Prospective, Matched Comparison Study of SUV Measurements From Time-of-Flight Versus Non–Time-of-Flight PET/CT Scanners. Clinical Nuclear Medicine, 2016, 41, e323-e326.	1.3	7
79	Determining the extent of tumor resection at surgical planning with 18F-fluciclovine PET/CT in patients with suspected glioma: multicenter phase III trials. Annals of Nuclear Medicine, 2021, 35, 1279-1292.	2.2	7
80	¹⁸ F-FSPG PET/CT Imaging of System x _C [–] Transporter Activity in Patients with Primary and Metastatic Brain Tumors. Radiology, 2022, 303, 620-631.	7.3	7
81	FDG Uptake by a Condylomata Acuminata in an HIV-Infected Patient Mimicked Urine Contamination. Clinical Nuclear Medicine, 2012, 37, 420-421.	1.3	6
82	Amyloid Imaging Mismatch. Clinical Nuclear Medicine, 2012, 37, 807-809.	1.3	6
83	Lung amyloid nodule detected by 99mTc-aprotinin scintigraphy. Annals of Nuclear Medicine, 2012, 26, 522-526.	2.2	6
84	Biodistribution and radiation dosimetry of [18F]-5-fluorouracil. Applied Radiation and Isotopes, 2013, 75, 11-17.	1.5	6
85	Assessment of tumor response to definitive chemoradiotherapy and prognosis prediction in patients with esophageal cancer judged by PET response criteria in solid tumors. Nuclear Medicine Communications, 2020, 41, 443-451.	1.1	6
86	Multicentric Reticulohistiocytosis Mimicking Malignancy on 18F-FDG PET/CT. Clinical Nuclear Medicine, 2017, 42, 567-568.	1.3	6
87	Prognostic Value of Quantitative Metabolic Metrics on Baseline Pre-Sunitinib FDG PET/CT in Advanced Renal Cell Carcinoma. PLoS ONE, 2016, 11, e0153321.	2.5	6
88	Optimal use of the FDG-PET/CT in the diagnostic process of fever of unknown origin (FUO): a comprehensive review. Japanese Journal of Radiology, 2022, 40, 1121-1137.	2.4	6
89	Performance of 99mTc-aprotinin scintigraphy for diagnosing light chain (AL) cardiac amyloidosis confirmed by endomyocardial biopsy. Journal of Nuclear Cardiology, 2020, 27, 1145-1153.	2.1	5
90	The potential of TOF PET-MRI for reducing artifacts in PET images. EJNMMI Physics, 2015, 2, A77.	2.7	4

#	Article	IF	CITATIONS
91	Semiquantitative Assessment of ¹⁸ F-FDG Uptake in the Normal Skeleton: Comparison Between PET/CT and Time-of-Flight Simultaneous PET/MRI. American Journal of Roentgenology, 2017, 209, 1136-1142.	2.2	4
92	Orbital Adult T-Cell Leukemia/lymphoma With Skin Involvement Demonstrated on FDG PET/CT. Clinical Nuclear Medicine, 2019, 44, 993-994.	1.3	4
93	Proliferation imaging with 11C-4DST PET/CT for the evaluation of cardiac sarcoidosis, compared with FDG-PET/CT given a long fasting preparation protocol. Journal of Nuclear Cardiology, 2021, 28, 752-755.	2.1	4
94	Avid F-18 FDG Uptake in Prostatic Sarcoma. Clinical Nuclear Medicine, 2009, 34, 388-389.	1.3	3
95	18F-FDG PET/CT Findings Preceded Elevation of Serum Proteinase 3 Antineutrophil Cytoplasmic Antibodies in Wegener Granulomatosis. Clinical Nuclear Medicine, 2014, 39, e67-e68.	1.3	3
96	Improved 123I-Ioflupane Binding After Immunotherapy in Anti–NAE Antibody–Positive Hashimoto Encephalopathy That Clinically Mimicked Multiple System Atrophy. Clinical Nuclear Medicine, 2017, 42, e390-e391.	1.3	3
97	Response to: Letter to the Editors: Re: Simultaneous PET/MRI in the Evaluation of Breast and Prostate Cancer Using Combined Na[18F]F and [18F]FDG: A Focus on Skeletal Lesions. Molecular Imaging and Biology, 2020, 22, 221-222.	2.6	3
98	Conspicuity of Malignant Lesions on PET/CT and Simultaneous Time-Of-Flight PET/MRI. PLoS ONE, 2017, 12, e0167262.	2.5	3
99	Detection of prostate cancer by an FDG-PET cancer screening program: results from a Japanese nationwide survey. Asia Oceania Journal of Nuclear Medicine and Biology, 2014, 2, 19-23.	0.1	3
100	Change in cancer diagnosis during the COVID-19 pandemic: Trends estimated from FDG-PET/CT. Global Health & Medicine, 2022, 4, 108-115.	1.4	3
101	Correlation analysis of measurement result between accelerator mass spectrometry and gamma counter. Annals of Nuclear Medicine, 2010, 24, 45-52.	2.2	2
102	F-18 FDG PET/CT evaluation of radiotherapy response in rare case of mucosa-associated lymphoid tissue lymphoma. Annals of Nuclear Medicine, 2010, 24, 115-119.	2.2	2
103	Validation for performing 11C-methionine and 18F-FDG-PET studies on the same day. Nuclear Medicine Communications, 2012, 33, 297-304.	1.1	2
104	Imaging patients with breast and prostate cancers using combined 18F NaF/18F FDG and TOF simultaneous PET/ MRI. EJNMMI Physics, 2015, 2, A65.	2.7	2
105	The clinical utility of phase-based respiratory gated PET imaging based on visual feedback with a head-mounted display system. British Journal of Radiology, 2019, 92, 20180233.	2.2	2
106	Proliferation PET tracer 11C-4DST PET/CT depicts hibernating myocardium. Journal of Nuclear Cardiology, 2021, 28, 2379-2383.	2.1	2
107	Efficacy of cell proliferation imaging with 4DST PET/CT for predicting the prognosis of patients with esophageal cancer: a comparison study with FDG PET/CT. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 2615-2623.	6.4	2
108	Non-AIDS-defining malignancies in Japanese hemophiliacs with HIV-1 infection. Global Health & Medicine, 2019, 1, 49-54.	1.4	2

RYOGO ΜΙΝΑΜΙΜΟΤΟ

#	Article	IF	CITATIONS
109	Proliferation PET/CT Imaging of Salivary Gland Tumor. Diagnostics, 2021, 11, 2065.	2.6	2
110	Amino Acid and Proliferation PET/CT for the Diagnosis of Multiple Myeloma. Frontiers in Nuclear Medicine, 2022, 1, .	1.2	2
111	Dramatic Change in 18F-FDG Uptake in a Sarcoidosis Case Showing Spontaneous Recovery. Clinical Nuclear Medicine, 2014, 39, 376-378.	1.3	1
112	FDG PET/CT Findings in TAFRO Syndrome. Clinical Nuclear Medicine, 2018, 43, 828-829.	1.3	1
113	Neurocognitive dysfunction and brain FDG-PET/CT findings in HIV-infected hemophilia patients and HIV-infected non-hemophilia patients. PLoS ONE, 2020, 15, e0230292.	2.5	1
114	Positron Emission Tomography for Future Drug Development. Recent Patents on Medical Imaging, 2011, 1, 137-151.	0.1	1
115	Detection of thyroid cancer by an FDG-PET cancer screening program: a Japanese nation-wide survey. Anticancer Research, 2014, 34, 4439-45.	1.1	1
116	Whole-body simultaneous time-of-flight PET-MRI: early experience with clinical studies. EJNMMI Physics, 2015, 2, A64.	2.7	0
117	Response to â€ [~] Commentary to "Evaluation of a new motion correction algorithm in PET/CT. Nuclear Medicine Communications, 2016, 37, 888.	1.1	0
118	Total-Body PET/MRI in Oncological Applications. , 2018, , 169-184.		0
119	Cell Proliferation PET Imaging with 4DST PET/CT in Colorectal Adenocarcinoma and Adenoma. Diagnostics, 2021, 11, 1658.	2.6	0
120	PET/AMS Applications in Drug Development. , 2010, , 250-259.		0