
## Carolyn L Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/767144/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Divergent Ca2+/calmodulin feedback regulation of CaV1 and CaV2 voltage-gated calcium channels<br>evolved in the common ancestor of Placozoa and Bilateria. Journal of Biological Chemistry, 2022, 298,<br>101741.                                       | 3.4 | 4         |
| 2  | Microscopy Studies of Placozoans. Methods in Molecular Biology, 2021, 2219, 99-118.                                                                                                                                                                     | 0.9 | 3         |
| 3  | Placozoan fiber cells: mediators of innate immunity and participants in wound healing. Scientific Reports, 2021, 11, 23343.                                                                                                                             | 3.3 | 9         |
| 4  | Early Metazoan Origin and Multiple Losses of a Novel Clade of RIM Presynaptic Calcium Channel Scaffolding Protein Homologs. Genome Biology and Evolution, 2020, 12, 1217-1239.                                                                          | 2.5 | 7         |
| 5  | Insights into the evolution of digestive systems from studies of Trichoplax adhaerens. Cell and Tissue<br>Research, 2019, 377, 353-367.                                                                                                                 | 2.9 | 20        |
| 6  | Coherent directed movement toward food modeled in <i>Trichoplax</i> , a ciliated animal lacking a nervous system. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8901-8908.                                | 7.1 | 46        |
| 7  | The ventral epithelium of <i>Trichoplax adhaerens</i> deploys in distinct patterns cells that secrete digestive enzymes, mucus or diverse neuropeptides. Biology Open, 2019, 8, .                                                                       | 1.2 | 29        |
| 8  | A Na+ leak channel cloned from Trichoplax adhaerens extends extracellular pH and Ca2+ sensing for<br>the DEG/ENaC family close to the base of Metazoa. Journal of Biological Chemistry, 2019, 294,<br>16320-16336.                                      | 3.4 | 23        |
| 9  | Cells containing aragonite crystals mediate responses to gravity in Trichoplax adhaerens (Placozoa),<br>an animal lacking neurons and synapses. PLoS ONE, 2018, 13, e0190905.                                                                           | 2.5 | 39        |
| 10 | Evolutionary insights into T-type Ca2+ channel structure, function, and ion selectivity from the<br><i>Trichoplax adhaerens</i> homologue. Journal of General Physiology, 2017, 149, 483-510.                                                           | 1.9 | 30        |
| 11 | Neuropeptidergic integration of behavior in <i>Trichoplax adhaerens</i> , an animal without synapses.<br>Journal of Experimental Biology, 2017, 220, 3381-3390.                                                                                         | 1.7 | 98        |
| 12 | Effects of Androgen and Estrogen Receptor Signaling Pathways on Bladder Cancer Initiation and<br>Progression. Bladder Cancer, 2016, 2, 127-137.                                                                                                         | 0.4 | 44        |
| 13 | Adherens Junctions Modulate Diffusion between Epithelial Cells in <i>Trichoplax adhaerens</i> .<br>Biological Bulletin, 2016, 231, 216-224.                                                                                                             | 1.8 | 44        |
| 14 | HER2 Signaling Drives DNA Anabolism and Proliferation through SRC-3 Phosphorylation and E2F1-Regulated Genes. Cancer Research, 2016, 76, 1463-1475.                                                                                                     | 0.9 | 35        |
| 15 | Effects of the Quest to Lava Mountain Computer Game on Dietary and Physical Activity Behaviors of<br>Elementary School Children: A Pilot Group-Randomized Controlled Trial. Journal of the Academy of<br>Nutrition and Dietetics, 2015, 115, 1260-1271. | 0.8 | 37        |
| 16 | Coordinated Feeding Behavior in Trichoplax, an Animal without Synapses. PLoS ONE, 2015, 10, e0136098.                                                                                                                                                   | 2.5 | 87        |
| 17 | Activation of p53 Transcriptional Activity by SMRT: a Histone Deacetylase 3-Independent Function of a Transcriptional Corepressor. Molecular and Cellular Biology, 2014, 34, 1246-1261.                                                                 | 2.3 | 22        |
| 18 | Novel Cell Types, Neurosecretory Cells, and Body Plan of the Early-Diverging Metazoan Trichoplax<br>adhaerens. Current Biology, 2014, 24, 1565-1572.                                                                                                    | 3.9 | 209       |

CAROLYN L SMITH

| #  | Article                                                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Chemoprevention of BBN-Induced Bladder Carcinogenesis by the Selective Estrogen Receptor<br>Modulator Tamoxifen. Translational Oncology, 2013, 6, 244-255.                                                                                                                                        | 3.7  | 40        |
| 20 | Raloxifene Inhibits Growth of RT4 Urothelial Carcinoma Cells via Estrogen Receptor-Dependent<br>Induction of Apoptosis and Inhibition of Proliferation. Hormones and Cancer, 2013, 4, 24-35.                                                                                                      | 4.9  | 41        |
| 21 | Synthesis of Novel Estrogen Receptor Antagonists Using Metal-Catalyzed Coupling Reactions and Characterization of Their Biological Activity. Journal of Medicinal Chemistry, 2013, 56, 2779-2790.                                                                                                 | 6.4  | 20        |
| 22 | Cooperative Activation of Gene Expression by Agonists and Antagonists Mediated by Estrogen Receptor<br>Heteroligand Dimer Complexes. Molecular Pharmacology, 2013, 83, 1066-1077.                                                                                                                 | 2.3  | 23        |
| 23 | Elevated nuclear expression of the SMRT corepressor in breast cancer is associated with earlier tumor recurrence. Breast Cancer Research and Treatment, 2012, 136, 253-265.                                                                                                                       | 2.5  | 18        |
| 24 | Coupling of receptor conformation and ligand orientation determine graded activity. Nature<br>Chemical Biology, 2010, 6, 837-843.                                                                                                                                                                 | 8.0  | 121       |
| 25 | Distinctive functions of p160 steroid receptor coactivators in proliferation of an<br>estrogen-independent, tamoxifen-resistant breast cancer cell line. Endocrine-Related Cancer, 2010, 18,<br>113-127.                                                                                          | 3.1  | 10        |
| 26 | Cooperative Activation of Cyclin D1 and Progesterone Receptor Gene Expression by the SRC-3 Coactivator and SMRT Corepressor. Molecular Endocrinology, 2010, 24, 1187-1202.                                                                                                                        | 3.7  | 30        |
| 27 | CK1δ modulates the transcriptional activity of ERα via AlB1 in an estrogen-dependent manner and regulates ERα–AlB1 interactions. Nucleic Acids Research, 2009, 37, 3110-3123.                                                                                                                     | 14.5 | 27        |
| 28 | Estradiol downregulation of the tumor suppressor gene <i>BTG2</i> requires estrogen receptorâ€i± and the REA corepressor. International Journal of Cancer, 2009, 124, 1841-1851.                                                                                                                  | 5.1  | 19        |
| 29 | The Cl-/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes. Nature, 2008, 453, 788-792.                                                                                                                                                                                  | 27.8 | 336       |
| 30 | Reduced calciumâ€dependent mitochondrial damage underlies the reduced vulnerability of<br>excitotoxicityâ€tolerant hippocampal neurons. Journal of Neurochemistry, 2008, 104, 1686-1699.                                                                                                          | 3.9  | 16        |
| 31 | The Silencing Mediator of Retinoic Acid and Thyroid Hormone Receptor (SMRT) Corepressor Is<br>Required for Full Estrogen Receptor α Transcriptional Activity. Molecular and Cellular Biology, 2007,<br>27, 5933-5948.                                                                             | 2.3  | 85        |
| 32 | Efficacy of Selective Estrogen Receptor Modulators in Nude Mice Bearing Human Transitional Cell<br>Carcinoma. Urology, 2007, 69, 1221-1226.                                                                                                                                                       | 1.0  | 56        |
| 33 | Marinobufagenin interferes with the function of the mineralocorticoid receptor. Biochemical and<br>Biophysical Research Communications, 2007, 356, 930-934.                                                                                                                                       | 2.1  | 8         |
| 34 | Synthetic 19-nortestosterone derivatives as estrogen receptor alpha subtype-selective ligands induce<br>similar receptor conformational changes and steroid receptor coactivator recruitment than natural<br>estrogens. Journal of Steroid Biochemistry and Molecular Biology, 2006, 99, 108-114. | 2.5  | 11        |
| 35 | Evolutionary identification of a subtype specific functional site in the ligand binding domain of steroid receptors. Proteins: Structure, Function and Bioinformatics, 2006, 64, 1046-1057.                                                                                                       | 2.6  | 18        |
| 36 | The Pure Estrogen Receptor Antagonist ICI 182,780 Promotes a Novel Interaction of Estrogen Receptor-α<br>with the 3′,5′-Cyclic Adenosine Monophosphate Response Element-Binding Protein-Binding Protein/p300<br>Coactivators. Molecular Endocrinology, 2006, 20, 2695-2710.                       | 3.7  | 23        |

CAROLYN L SMITH

| #  | Article                                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Androgens Modulate Expression of Transcription Intermediary Factor 2, an Androgen Receptor<br>Coactivator whose Expression Level Correlates with Early Biochemical Recurrence in Prostate<br>Cancer. Cancer Research, 2006, 66, 10594-10602.                                | 0.9  | 162       |
| 38 | Role of SRC-1 in the Promotion of Prostate Cancer Cell Growth and Tumor Progression. Cancer Research, 2005, 65, 7959-7967.                                                                                                                                                  | 0.9  | 186       |
| 39 | Rapid Estrogen-Induced Phosphorylation of the SRC-3 Coactivator Occurs in an Extranuclear Complex<br>Containing Estrogen Receptor. Molecular and Cellular Biology, 2005, 25, 8273-8284.                                                                                     | 2.3  | 71        |
| 40 | Identification of target genes in breast cancer cells directly regulated by the SRC-3/AIB1 coactivator.<br>Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1339-1344.                                                           | 7.1  | 92        |
| 41 | Differential skeletal responses of hindlimb unloaded rats on a vitamin D-deficient diet to 1,25-dihydroxyvitamin D3 and its analog, seocalcitol (EB1089). Bone, 2004, 35, 134-143.                                                                                          | 2.9  | 14        |
| 42 | Tensile forces attenuate estrogen-stimulated collagen synthesis in the ACL. Biochemical and Biophysical Research Communications, 2004, 317, 1221-1225.                                                                                                                      | 2.1  | 23        |
| 43 | SRA coactivation of estrogen receptor-α is phosphorylation-independent, and enhances<br>4-hydroxytamoxifen agonist activity. Biochemical and Biophysical Research Communications, 2004, 323,<br>332-338.                                                                    | 2.1  | 24        |
| 44 | Ligand-Independent Interactions of p160/Steroid Receptor Coactivators and CREB-Binding Protein (CBP)<br>with Estrogen Receptor-α: Regulation by Phosphorylation Sites in the A/B Region Depends on Other<br>Receptor Domains. Molecular Endocrinology, 2003, 17, 1296-1314. | 3.7  | 133       |
| 45 | Mechanistic Differences in the Activation of Estrogen Receptor-α (ERα)- and ERβ-dependent Gene<br>Expression by cAMP Signaling Pathway(s). Journal of Biological Chemistry, 2003, 278, 12834-12845.                                                                         | 3.4  | 60        |
| 46 | Cellular and genetic characterization of human adult bone marrow-derived neural stem-like cells: a potential antiglioma cellular vector. Cancer Research, 2003, 63, 8877-89.                                                                                                | 0.9  | 69        |
| 47 | SKF-82958 Is a Subtype-selective Estrogen Receptor-α (ERα) Agonist That Induces Functional Interactions<br>between ERα and AP-1. Journal of Biological Chemistry, 2002, 277, 1669-1679.                                                                                     | 3.4  | 22        |
| 48 | Genetic Ablation of the Steroid Receptor Coactivator-Ubiquitin Ligase, E6-AP, Results in<br>Tissue-Selective Steroid Hormone Resistance and Defects in Reproduction. Molecular and Cellular<br>Biology, 2002, 22, 525-535.                                                  | 2.3  | 73        |
| 49 | FRAP reveals that mobility of oestrogen receptor- $\hat{l}\pm$ is ligand- and proteasome-dependent. Nature Cell Biology, 2001, 3, 15-23.                                                                                                                                    | 10.3 | 373       |
| 50 | Ligand-Mediated Assembly and Real-Time Cellular Dynamics of Estrogen Receptor α-Coactivator<br>Complexes in Living Cells. Molecular and Cellular Biology, 2001, 21, 4404-4412.                                                                                              | 2.3  | 141       |
| 51 | The 26S Proteasome Is Required for Estrogen Receptor-α and Coactivator Turnover and for Efficient<br>Estrogen Receptor-α Transactivation. Molecular Cell, 2000, 5, 939-948.                                                                                                 | 9.7  | 526       |
| 52 | The Angelman Syndrome-Associated Protein, E6-AP, Is a Coactivator for the Nuclear Hormone Receptor<br>Superfamily. Molecular and Cellular Biology, 1999, 19, 1182-1189.                                                                                                     | 2.3  | 394       |
| 53 | Cross-Talk between Peptide Growth Factor and Estrogen Receptor Signaling Pathways. Biology of Reproduction, 1998, 58, 627-632.                                                                                                                                              | 2.7  | 284       |
| 54 | Coactivator and Corepressor Regulation of the Agonist/Antagonist Activity of the Mixed<br>Antiestrogen, 4-Hydroxytamoxifen. Molecular Endocrinology, 1997, 11, 657-666.                                                                                                     | 3.7  | 585       |

CAROLYN L SMITH

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Dopaminergic Regulation of Progesterone Receptors: Brain D5 Dopamine Receptors Mediate Induction of Lordosis by D1-Like Agonists in Rats. Journal of Neuroscience, 1996, 16, 4823-4834.                                          | 3.6 | 88        |
| 56 | Distinct effects of bFGF and PDGF on oligodendrocyte progenitor cells. Clia, 1993, 7, 245-254.                                                                                                                                   | 4.9 | 145       |
| 57 | A Leu → His substitution at residue 93 in human corticosteroid binding globulin results in reduced affinity for cortisol. Journal of Steroid Biochemistry and Molecular Biology, 1992, 42, 671-676.                              | 2.5 | 39        |
| 58 | Rabbit Corticosteroid-Binding Globulin: Primary Structure and Biosynthesis during Pregnancy.<br>Molecular Endocrinology, 1990, 4, 1166-1172.                                                                                     | 3.7 | 29        |
| 59 | A Role for Corticosteroid-Binding Globulin in Delivery of Cortisol to Activated Neutrophils*. Journal of Clinical Endocrinology and Metabolism, 1990, 71, 34-39.                                                                 | 3.6 | 240       |
| 60 | The critical period for peripheral specification of dorsal root ganglion neurons is related to the period of sensory neurogenesis. Developmental Biology, 1990, 142, 476-480.                                                    | 2.0 | 0         |
| 61 | Interaction between corticosteroid binding globulin and activated leukocytes in vitro. Biochemical and Biophysical Research Communications, 1990, 172, 172-177.                                                                  | 2.1 | 31        |
| 62 | DNA sequencing in HydroLink matrices: Extension of reading ability to > 600 nucleotides.<br>Electrophoresis, 1990, 11, 595-600.                                                                                                  | 2.4 | 11        |
| 63 | The Human Sex Hormone-Binding Globulin Gene Contains Exons for Androgen-Binding Protein and<br>Two Other Testicular Messenger RNAs. Molecular Endocrinology, 1989, 3, 1869-1876.                                                 | 3.7 | 120       |
| 64 | Rat Corticosteroid Binding Globulin: Primary Structure and Messenger Ribonucleic Acid Levels in the<br>Liver under Different Physiological Conditions. Molecular Endocrinology, 1989, 3, 420-426.                                | 3.7 | 43        |
| 65 | HydroLinkTM gel electrophoresis (HLGE). II. Applications of a new polymer matrix to dsDNA analysis.<br>Journal of Proteomics, 1989, 19, 51-64.                                                                                   | 2.4 | 14        |
| 66 | HydroLinkTM gel electrophoresis (HLGE). III. High DNA loading capacity and recovery of dsDNA. Journal of Proteomics, 1989, 19, 65-73.                                                                                            | 2.4 | 14        |
| 67 | Specificity of sensory projections to the spinal cord during development in bullfrogs. Journal of Comparative Neurology, 1988, 269, 96-108.                                                                                      | 1.6 | 36        |
| 68 | Corticosteroid binding globulin, testosterone-estradiol binding globulin, and androgen binding<br>protein belong to protein families distinct from steroid receptors. The Journal of Steroid<br>Biochemistry, 1988, 30, 131-139. | 1.1 | 12        |
| 69 | Peripheral Specification of Sensory Connections in the Spinal Cord. Brain, Behavior and Evolution, 1988, 31, 227-242.                                                                                                            | 1.7 | 28        |
| 70 | Sensory neurons supplying touch domes near the body midlines project bilaterally in the thoracic spinal cord of rats. Journal of Comparative Neurology, 1986, 245, 541-552.                                                      | 1.6 | 23        |
| 71 | The development and postnatal organization of primary afferent projections to the rat thoracic spinal cord. Journal of Comparative Neurology, 1983, 220, 29-43.                                                                  | 1.6 | 194       |
| 72 | Dissection of cytochrome P-450 isozymes (RLM) from fractions of untreated rat liver microsomal proteins. Biochemical and Biophysical Research Communications, 1982, 107, 1517-1523.                                              | 2.1 | 24        |

| #  | Article                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Chromosomal nonhistone proteins of rat hepatomas and normal rat liver. Biochemical and<br>Biophysical Research Communications, 1974, 60, 1468-1474. | 2.1 | 24        |