Marino Quaresimin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7671289/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Damage evolution in cross-ply laminates under tension–compression and compression-compression cyclic loads. Composites Part A: Applied Science and Manufacturing, 2022, 156, 106888.	7.6	1
2	Compressive response and energy absorption of all-composite sandwich panels with channel cores. Composite Structures, 2022, 289, 115461.	5.8	22
3	Crack initiation and evolution in glass/epoxy laminates under two-stage block loadings. Composites Science and Technology, 2022, 225, 109504.	7.8	6
4	A multiscale strategy for assessing the micro-scale stress distribution in the matrix of textile composites. Composites Part A: Applied Science and Manufacturing, 2022, 159, 107026.	7.6	4
5	Modelling the influence of the microstructure on the high cycle fatigue crack initiation in short fibre reinforced thermoplastics. Composites Science and Technology, 2021, 201, 108533.	7.8	9
6	Energy-absorption characteristics of tube-reinforced absorbent honeycomb sandwich structure. Composite Structures, 2021, 255, 112946.	5.8	41
7	A multiscale damage-based strategy to predict the fatigue damage evolution and the stiffness loss in composite laminates. , 2021, , 669-690.		0
8	Stiffness degradation of symmetric laminates with off-axis cracks and delamination: an analytical model. International Journal of Solids and Structures, 2021, 213, 50-62.	2.7	12
9	Influence of manufacturing-induced defects on the fatigue performances of autoclave moulded laminates. Advanced Manufacturing: Polymer and Composites Science, 2021, 7, 36-47.	0.4	2
10	Improving the Antimicrobial and Mechanical Properties of Epoxy Resins via Nanomodification: An Overview. Molecules, 2021, 26, 5426.	3.8	14
11	Prediction of the Seebeck coefficient of thermoelectric unidirectional fibre-reinforced composites. Composites Part B: Engineering, 2021, 223, 109111.	12.0	7
12	Modelling the in-plane thermoelectric properties of fibre-reinforced multi-directional laminates. Composites Science and Technology, 2021, 218, 109130.	7.8	1
13	Modelling the correlation between the electrical resistance and stiffness degradation in conductive composite laminates with complex damage scenarios. Composite Structures, 2021, , 114914.	5.8	1
14	Effect of fibre waviness on the compressive fatigue behavior of woven carbon/epoxy laminates. Composites Part B: Engineering, 2020, 199, 108282.	12.0	15
15	Modelling the electrical resistance of multidirectional laminates with off-axis cracks. Composite Structures, 2020, 237, 111928.	5.8	5
16	Characterisation and analysis of transverse crack-induced delamination in cross-ply composite laminates under fatigue loadings. International Journal of Fatigue, 2019, 129, 105217.	5.7	43
17	Prediction of fatigue life to crack initiation in unidirectional plies containing voids. Composites Part A: Applied Science and Manufacturing, 2019, 127, 105638.	7.6	10
18	Highly conductive ultra-sensitive SWCNT-coated glass fiber reinforcements for laminate composites structural health monitoring. Composites Part B: Engineering, 2019, 169, 37-44.	12.0	43

#	Article	IF	CITATIONS
19	Multifunctional Epoxy/Nanocomposites Based on Natural Moroccan Clays with High Antimicrobial Activity: Morphological, Thermal and Mechanical Properties. Journal of Nanomaterials, 2019, 2019, 1-12.	2.7	6
20	Fatigue damage evolution in unidirectional glass/epoxy composites under a cyclic load. Polymer Testing, 2019, 74, 216-224.	4.8	12
21	A damage-based model for mixed-mode crack propagation in composite laminates. Composites Part A: Applied Science and Manufacturing, 2018, 107, 421-431.	7.6	15
22	Fatigue damage and stiffness evolution in composite laminates: a damage-based framework. Procedia Engineering, 2018, 213, 17-24.	1.2	15
23	Electrical resistance change vs damage state in cracked symmetric laminates: A closed form solution. Composite Structures, 2018, 184, 1081-1091.	5.8	8
24	Development, validation and analysis of an efficient micro-scale representative volume element for unidirectional composites. Composites Part A: Applied Science and Manufacturing, 2018, 110, 268-283.	7.6	26
25	A damage-based modelling framework for the fatigue damage evolution in composite laminates. AIP Conference Proceedings, 2018, , .	0.4	2
26	A novel pseudo-grain approach for the estimation of the elastic stress distributions within the matrix of short fiber-reinforced polymers. Composites Part B: Engineering, 2018, 150, 115-123.	12.0	13
27	Periodic boundary conditions for FE analyses of a representative volume element for composite laminates with one cracked ply and delaminations. Composite Structures, 2018, 201, 932-941.	5.8	22
28	Modelling the electrical resistance change in a multidirectional laminate with a delamination. Composites Science and Technology, 2018, 162, 225-234.	7.8	19
29	2.13 Multiaxial Fatigue of Composites: Experimental Evidences and Life Prediction Methodology. , 2018, , 249-274.		3
30	Damage initiation and evolution in short fiber reinforced polyamide under fatigue loading: Influence of fiber volume fraction. Composites Part B: Engineering, 2017, 113, 331-341.	12.0	39
31	Multifunctional Cu ²⁺ â€montmorillonite/epoxy resin nanocomposites with antibacterial activity. Journal of Applied Polymer Science, 2017, 134, .	2.6	17
32	Electrical response of a laminate with a delamination: modelling and experiments. Composites Science and Technology, 2017, 143, 31-45.	7.8	23
33	A bio-composite racing sailboat: Materials selection, design, manufacturing and sailing. Ocean Engineering, 2017, 133, 142-150.	4.3	30
34	Delamination onset in symmetric cross-ply laminates under static loads: Theory, numerics and experiments. Composite Structures, 2017, 176, 420-432.	5.8	30
35	Prediction of the crack density evolution in multidirectional laminates under fatigue loadings. Composites Science and Technology, 2017, 145, 24-39.	7.8	52
36	Analytical model for the prediction of the piezoresistive behavior of CNT modified polymers. Composites Part B: Engineering, 2017, 109, 53-63.	12.0	58

#	Article	IF	CITATIONS
37	Fatigue behaviour of glass/epoxy laminates in the presence of voids. International Journal of Fatigue, 2017, 95, 18-28.	5.7	76
38	Damage mechanisms in a short glass fiber reinforced polyamide under fatigue loading. International Journal of Fatigue, 2017, 94, 145-157.	5.7	44
39	A damage-based approach for the fatigue design of composite structures. IOP Conference Series: Materials Science and Engineering, 2016, 139, 012006.	0.6	9
40	Modeling the crack initiation in unidirectional laminates under multiaxial fatigue loading1. , 2016, , 357-375.		0
41	Effectiveness of the random sequential absorption algorithm in the analysis of volume elements with nanoplatelets. Computational Materials Science, 2016, 117, 511-517.	3.0	6
42	Early stage damage in off-axis plies under fatigue loading. Composites Science and Technology, 2016, 128, 147-154.	7.8	48
43	Local microstructure and stress distributions at the crack initiation site in a short fiber reinforced polyamide under fatigue loading. Polymer Testing, 2016, 54, 250-259.	4.8	25
44	Health monitoring of cross-ply laminates: Modelling the correlation between damage evolution and electrical resistance change. Composites Part A: Applied Science and Manufacturing, 2016, 82, 151-158.	7.6	16
45	Toughening mechanisms in polymer nanocomposites: From experiments to modelling. Composites Science and Technology, 2016, 123, 187-204.	7.8	181
46	Damage accumulation under multiaxial fatigue loading. , 2016, , 61-83.		2
47	Effect of voids on the crack formation in a [45/â^'45/0]s laminate under cyclic axial tension. Composites Part A: Applied Science and Manufacturing, 2016, 91, 493-500.	7.6	35
48	Life estimation methodology for short fiber reinforced polymers under thermoâ€mechanical loading in automotive applications. Materialwissenschaft Und Werkstofftechnik, 2015, 46, 214-228.	0.9	10
49	Fatigue response and damage evolution in 2D textile composites. , 2015, , 193-221.		1
50	Toughening mechanisms in nanoparticle polymer composites. , 2015, , 113-133.		6
51	Multifunctional polymer nanocomposites with enhanced mechanical and anti-microbial properties. Composites Part B: Engineering, 2015, 80, 108-115.	12.0	21
52	Influence of manufacturing induced defects on damage initiation and propagation in carbon/epoxy NCF laminates. Advanced Manufacturing: Polymer and Composites Science, 2015, 1, 44-53.	0.4	14
53	A numerical/experimental procedure for the assessment of the crash response of composite structures. International Journal of Automotive Composites, 2015, 1, 281.	0.1	0
54	50 th Anniversary Article: Multiaxial Fatigue Testing of Composites: From the Pioneers to Future Directions. Strain, 2015, 51, 16-29.	2.4	21

#	Article	IF	CITATIONS
55	Mechanical behaviour of epoxy/silica nanocomposites: Experiments and modelling. Composites Part A: Applied Science and Manufacturing, 2015, 72, 58-64.	7.6	39
56	A stiffness degradation model for cracked multidirectional laminates with cracks in multiple layers. International Journal of Solids and Structures, 2015, 58, 34-51.	2.7	75
57	Modelling the crack initiation in unidirectional laminates under multiaxial fatigue loading. , 2015, , 127-145.		0
58	Mixed-mode fatigue of bonded joints in composites. , 2015, , 271-292.		0
59	Late-stage fatigue damage in a 3D orthogonal non-crimp woven composite: An experimental and numerical study. Composites Part A: Applied Science and Manufacturing, 2015, 79, 155-163.	7.6	21
60	A comprehensive description of interfibre failure in fibre reinforced composites. Theoretical and Applied Fracture Mechanics, 2015, 79, 91-97.	4.7	12
61	Influence of load ratio on the biaxial fatigue behaviour and damage evolution in glass/epoxy tubes under tension–torsion loading. Composites Part A: Applied Science and Manufacturing, 2015, 78, 294-302.	7.6	32
62	Analytical solution for the three-dimensional stress fields in anisotropic composite bimaterial corners. Composite Structures, 2015, 122, 127-138.	5.8	9
63	Fatigue of fiber reinforced composites under multiaxial loading. , 2015, , 155-190.		1
64	An efficient RVE formulation for the analysis of the elastic properties of spherical nanoparticle reinforced polymers. Computational Materials Science, 2015, 96, 319-326.	3.0	38
65	Damage mechanisms in PBT-GF30 under thermo-mechanical cyclic loading. AlP Conference Proceedings, 2014, , .	0.4	7
66	Modelling fibre–matrix debonding under biaxial loading. Composites Part A: Applied Science and Manufacturing, 2014, 61, 33-42.	7.6	23
67	A multi-scale and multi-mechanism approach for the fracture toughness assessment of polymer nanocomposites. Composites Science and Technology, 2014, 91, 16-21.	7.8	68
68	Advances in damage mechanics of polymer composites. Composites Part B: Engineering, 2014, 65, 1.	12.0	7
69	Reprint of: Damage evolution under cyclic multiaxial stress state: A comparative analysis between glass/epoxy laminates and tubes. Composites Part B: Engineering, 2014, 65, 2-10.	12.0	7
70	Damage initiation and evolution in glass/epoxy tubes subjected to combined tension–torsion fatigue loading. International Journal of Fatigue, 2014, 63, 25-35.	5.7	98
71	Damage evolution under cyclic multiaxial stress state: A comparative analysis between glass/epoxy laminates and tubes. Composites Part B: Engineering, 2014, 61, 282-290.	12.0	95
72	Characteristic of mode I fatigue crack propagation of CFRP laminates toughened with CNF interlayer. Composites Part B: Engineering, 2014, 65, 26-33.	12.0	36

#	Article	IF	CITATIONS
73	A damage based model for crack initiation in unidirectional composites under multiaxial cyclic loading. Composites Science and Technology, 2014, 99, 154-163.	7.8	78
74	Plastic shear bands and fracture toughness improvements of nanoparticle filled polymers: A multiscale analytical model. Composites Part A: Applied Science and Manufacturing, 2013, 48, 144-152.	7.6	70
75	Influence of interphase and filler distribution on the elastic properties of nanoparticle filled polymers. Mechanics Research Communications, 2013, 52, 92-94.	1.8	37
76	Mixed mode (I+II) fracture toughness of polymer nanoclay nanocomposites. Engineering Fracture Mechanics, 2013, 111, 50-64.	4.3	53
77	Notch effect in clay-modified epoxy: a new perspective on nanocomposite properties. Composite Interfaces, 2013, 20, 405-419.	2.3	16
78	Crack propagation analysis in composite bonded joints under mixed-mode (I+II) static and fatigue loading: a damage-based model. Journal of Adhesion Science and Technology, 2013, 27, 1393-1406.	2.6	15
79	Numerical evaluation of aerodynamic and inertial contributions to Darrieus wind turbine blade deformation. Renewable Energy, 2013, 51, 101-112.	8.9	58
80	Nanoparticle debonding strength: A comprehensive study on interfacial effects. International Journal of Solids and Structures, 2013, 50, 3225-3232.	2.7	28
81	Crack propagation analysis in composite bonded joints under mixed-mode (I+II) static and fatigue loading: experimental investigation and phenomenological modelling. Journal of Adhesion Science and Technology, 2013, 27, 1179-1196.	2.6	22
82	On the investigation of the biaxial fatigue behaviour of unidirectional composites. Composites Part B: Engineering, 2013, 54, 200-208.	12.0	59
83	Energy absorption in composite laminates under impact loading. Composites Part B: Engineering, 2013, 44, 133-140.	12.0	84
84	The effect of surface treatments on the mechanical properties of basaltâ€reinforced epoxy composites. Polymer Composites, 2013, 34, 320-329.	4.6	43
85	Impact Damage and Residual Compression Strength of CNF/CFRP Hybrid Laminates. Journal of Solid Mechanics and Materials Engineering, 2013, 7, 381-393.	0.5	5
86	Mixed modes interlaminar fracture toughness of cfrp laminates toughened with CNF interlayer. Acta Mechanica Solida Sinica, 2012, 25, 321-330.	1.9	11
87	A multiscale model to describe nanocomposite fracture toughness enhancement by the plastic yielding of nanovoids. Composites Science and Technology, 2012, 72, 1683-1691.	7.8	72
88	Stress Distributions Around Rigid Nanoparticles. International Journal of Fracture, 2012, 176, 105-112.	2.2	19
89	Damage mechanisms in composite bonded joints under fatigue loading. Composites Part B: Engineering, 2012, 43, 210-220.	12.0	21
90	Strategies for the assessment of nanocomposite mechanical properties. Composites Part B: Engineering, 2012, 43, 2290-2297.	12.0	43

#	Article	IF	CITATIONS
91	Fracture and interlaminar properties of clay-modified epoxies and their glass reinforced laminates. Engineering Fracture Mechanics, 2012, 81, 80-93.	4.3	40
92	Experimental investigation of flash weakening in limestone. Journal of Structural Geology, 2012, 38, 183-199.	2.3	67
93	Low- to high-velocity frictional properties of the clay-rich gouges from the slipping zone of the 1963 Vaiont slide, northern Italy. Journal of Geophysical Research, 2011, 116, .	3.3	55
94	Correction to "Low- to high-velocity frictional properties of the clay-rich gouges from the slipping zone of the 1963 Vaiont slide, northern Italyâ€: Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	2
95	Influence of the interphase zone on the nanoparticle debonding stress. Composites Science and Technology, 2011, 72, 49-55.	7.8	100
96	The Effect of Surface Stresses on the Critical Debonding Stress Around Nanoparticles. International Journal of Fracture, 2011, 172, 97-103.	2.2	16
97	Fatigue strength assessment of a short fiber composite based on the specific heat dissipation. Composites Part B: Engineering, 2011, 42, 217-225.	12.0	60
98	Thermo-mechanical characterization of epoxy/clay nanocomposites as matrices for carbon/nanoclay/epoxy laminates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 6324-6333.	5.6	48
99	Energy absorption capability of nanomodified glass/epoxy laminates. Procedia Engineering, 2011, 10, 780-785.	1.2	24
100	Viscoelastic material behaviour of PBT-GF30 under thermo-mechanical cyclic loading. Procedia Engineering, 2011, 10, 2141-2146.	1.2	6
101	Assessment of Debonding-Induced Toughening in Nanocomposites. Procedia Engineering, 2011, 10, 2973-2978.	1.2	14
102	Plastic Yielding Around Nanovoids. Procedia Engineering, 2011, 10, 3316-3321.	1.2	10
103	On the tension–tension fatigue behaviour of a carbon reinforced thermoplastic part I: Limitations of the ASTM D3039/D3479 standard. Polymer Testing, 2011, 30, 625-632.	4.8	62
104	Influence of the interface ply orientation on the fatigue behaviour of bonded joints in composite materials. International Journal of Fatigue, 2010, 32, 82-93.	5.7	32
105	Multiaxial fatigue of a short glass fibre reinforced polyamide 6.6 – Fatigue and fracture behaviour. International Journal of Fatigue, 2010, 32, 17-28.	5.7	50
106	Fatigue behaviour and life assessment of composite laminates under multiaxial loadings. International Journal of Fatigue, 2010, 32, 2-16.	5.7	147
107	Life prediction for bonded joints in composite material based on actual fatigue damage. , 2010, , 316-349.		0
108	Influence of temperature and thickness on the off-axis behaviour of short glass fibre reinforced polyamide 6.6 – cyclic loading. Composites Part A: Applied Science and Manufacturing, 2010, 41, 1368-1379.	7.6	109

#	Article	IF	CITATIONS
109	Influence of temperature and thickness on the off-axis behaviour of short glass fibre reinforced polyamide 6.6 – Quasi-static loading. Composites Part A: Applied Science and Manufacturing, 2010, 41, 859-871.	7.6	97
110	Fatigue of fiber reinforced composites under multiaxial loading. , 2010, , 334-389.		0
111	Understanding the effect of nano-modifier addition upon the properties of fibre reinforced laminates. Composites Science and Technology, 2008, 68, 718-726.	7.8	84
112	Mode I Strain Energy Release Rate in composite laminates in the presence of voids. Composites Science and Technology, 2008, 68, 2616-2623.	7.8	49
113	Fracture behaviour of fumed silica/epoxy nanocomposites. Composites Part A: Applied Science and Manufacturing, 2008, 39, 1851-1858.	7.6	76
114	Influence of surface treatment on mechanical behaviour of fumed silica/epoxy resin nanocomposites. Composite Interfaces, 2006, 13, 699-715.	2.3	52
115	Fatigue behaviour and damage evolution of single lap bonded joints in composite material. Composites Science and Technology, 2006, 66, 176-187.	7.8	123
116	Experimental techniques and design in composite materials (ETDCM6). Composites Science and Technology, 2006, 66, 153.	7.8	0
117	Stress intensity factors and strain energy release rates in single lap bonded joints in composite materials. Composites Science and Technology, 2006, 66, 647-656.	7.8	77
118	Glass-fibre-reinforced composites with enhanced mechanical and electrical properties – Benefits and limitations of a nanoparticle modified matrix. Engineering Fracture Mechanics, 2006, 73, 2346-2359.	4.3	334
119	Multi-axial fatigue behaviour of a severely notched carbon steel. International Journal of Fatigue, 2006, 28, 485-493.	5.7	103
120	Life prediction of bonded joints in composite materials. International Journal of Fatigue, 2006, 28, 1166-1176.	5.7	76
121	A Model for the Energy Absorption Capability of Composite Laminates. , 2006, , 811.		1
122	Influence of Material System, Lay-Up and Thickness on the Energy Absorption Capability of Composite Laminates. , 2006, , .		0
123	Modelling the fatigue behaviour of bonded joints in composite materials. , 2005, , 469-494.		1
124	Two-stage fatigue loading of woven carbon fibre reinforced laminates. Fatigue and Fracture of Engineering Materials and Structures, 2003, 26, 17-26.	3.4	65
125	Multiaxial Fatigue Behaviour of Composite Laminates. Key Engineering Materials, 2002, 221-222, 71-80.	0.4	17
126	Static Notch Sensitivity of GFRP Composites. Key Engineering Materials, 2002, 221-222, 121-132.	0.4	1

#	Article	IF	CITATIONS
127	A two-term stress function approach to evaluate stress distributions in bonded joints of different geometries. Journal of Strain Analysis for Engineering Design, 2002, 37, 385-398.	1.8	33
128	Influence of Quick Ageing on the Fatigue Behaviour of SMC Composite Materials. Journal of Reinforced Plastics and Composites, 2001, 20, 147-165.	3.1	2
129	Design and Optimisation of an RTM Composite Bicycle Crank. Journal of Reinforced Plastics and Composites, 2001, 20, 129-146.	3.1	7
130	Cumulative Damage of Short Glass Fiber Reinforced Thermoplastics. Journal of Reinforced Plastics and Composites, 2001, 20, 596-605.	3.1	14
131	Cumulative Damage of Short Class Fiber Reinforced Thermoplastics. Journal of Reinforced Plastics and Composites, 2001, 20, 596-605.	3.1	1
132	Influence of Quick Ageing on the Fatigue Behaviour of SMC Composite Materials. Journal of Reinforced Plastics and Composites, 2001, 20, 147-165.	3.1	3
133	Numerical Simulation of SMC Component Moulding. Key Engineering Materials, 1998, 144, 191-202.	0.4	7
134	Scatter bands summarizing the fatigue strength of aluminium alloy bolted joints. International Journal of Fatigue, 1997, 19, 401-407.	5.7	20
135	A re-analysis on fatigue data of aluminium alloy bolted joints. International Journal of Fatigue, 1997, 19, 579-588.	5.7	14
136	Determination of the stress field around the tip of a V notch. Welding International, 1996, 10, 381-386.	0.7	0
137	Damage Mechanics in G/E Tubes under Tension-Torsion Cyclic Loading. Key Engineering Materials, 0, 488-489, 783-786.	0.4	3
138	Modelling the Damage Monitoring Capability of Conductive Glass/Epoxy Laminates. , 0, , .		0