
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7670996/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mad2 Overexpression Promotes Aneuploidy and Tumorigenesis in Mice. Cancer Cell, 2007, 11, 9-23.	16.8	556
2	Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1814-1819.	7.1	506
3	The histone variant macroH2A suppresses melanoma progression through regulation of CDK8. Nature, 2010, 468, 1105-1109.	27.8	345
4	miR-30b/30d Regulation of GalNAc Transferases Enhances Invasion and Immunosuppression during Metastasis. Cancer Cell, 2011, 20, 104-118.	16.8	314
5	A Systems Biology Approach Identifies FUT8 as a Driver of Melanoma Metastasis. Cancer Cell, 2017, 31, 804-819.e7.	16.8	233
6	Melanoma MicroRNA Signature Predicts Post-Recurrence Survival. Clinical Cancer Research, 2010, 16, 1577-1586.	7.0	204
7	Epigenetic Silencing of CDR1as Drives IGF2BP3-Mediated Melanoma Invasion and Metastasis. Cancer Cell, 2020, 37, 55-70.e15.	16.8	200
8	BRD4 Sustains Melanoma Proliferation and Represents a New Target for Epigenetic Therapy. Cancer Research, 2013, 73, 6264-6276.	0.9	196
9	Control of Embryonic Stem Cell Identity by BRD4-Dependent Transcriptional Elongation of Super-Enhancer-Associated Pluripotency Genes. Cell Reports, 2014, 9, 234-247.	6.4	181
10	Histone Variant H2A.Z.2 Mediates Proliferation and Drug Sensitivity of Malignant Melanoma. Molecular Cell, 2015, 59, 75-88.	9.7	166
11	Limited Environmental Serine and Glycine Confer Brain Metastasis Sensitivity to PHGDH Inhibition. Cancer Discovery, 2020, 10, 1352-1373.	9.4	145
12	miR-204-5p and miR-211-5p Contribute to BRAF Inhibitor Resistance in Melanoma. Cancer Research, 2018, 78, 1017-1030.	0.9	140
13	FBXW7 modulates cellular stress response and metastatic potential through HSF1 post-translational modification. Nature Cell Biology, 2015, 17, 322-332.	10.3	134
14	Harnessing BET Inhibitor Sensitivity Reveals AMIGO2 as a Melanoma Survival Gene. Molecular Cell, 2017, 68, 731-744.e9.	9.7	90
15	MicroRNA and cutaneous melanoma: from discovery to prognosis and therapy. Carcinogenesis, 2012, 33, 1823-1832.	2.8	79
16	Revisiting determinants of prognosis in cutaneous melanoma. Cancer, 2015, 121, 4108-4123.	4.1	75
17	A miRNA-Based Signature Detected in Primary Melanoma Tissue Predicts Development of Brain Metastasis. Clinical Cancer Research, 2015, 21, 4903-4912.	7.0	73
18	circSamd4 represses myogenic transcriptional activity of PUR proteins. Nucleic Acids Research, 2020, 48, 3789-3805.	14.5	60

2

#	Article	IF	CITATIONS
19	Integrative Genomics Identifies Molecular Alterations that Challenge the Linear Model of Melanoma Progression. Cancer Research, 2011, 71, 2561-2571.	0.9	57
20	Anti- <i>miR182</i> Reduces Ovarian Cancer Burden, Invasion, and Metastasis: An <i>In Vivo</i> Study in Orthotopic Xenografts of Nude Mice. Molecular Cancer Therapeutics, 2014, 13, 1729-1739.	4.1	55
21	The State of Melanoma: Emergent Challenges and Opportunities. Clinical Cancer Research, 2021, 27, 2678-2697.	7.0	53
22	Identification of Metastasis-Suppressive microRNAs in Primary Melanoma. Journal of the National Cancer Institute, 2015, 107, .	6.3	47
23	BET and BRAF inhibitors act synergistically against BRAF―mutant melanoma. Cancer Medicine, 2016, 5, 1183-1193.	2.8	41
24	Lysyl oxidase-like 3 is required for melanoma cell survival by maintaining genomic stability. Cell Death and Differentiation, 2018, 25, 935-950.	11.2	40
25	Micro <scp>RNA</scp> â€125a promotes resistance to <scp>BRAF</scp> inhibitors through suppression of the intrinsic apoptotic pathway. Pigment Cell and Melanoma Research, 2017, 30, 328-338.	3.3	34
26	Melanoma-Secreted Amyloid Beta Suppresses Neuroinflammation and Promotes Brain Metastasis. Cancer Discovery, 2022, 12, 1314-1335.	9.4	31
27	A Leukocyte Infiltration Score Defined by a Gene Signature Predicts Melanoma Patient Prognosis. Molecular Cancer Research, 2019, 17, 109-119.	3.4	28
28	Network models of primary melanoma microenvironments identify key melanoma regulators underlying prognosis. Nature Communications, 2021, 12, 1214.	12.8	27
29	HNRNPM controls circRNA biogenesis and splicing fidelity to sustain cancer cell fitness. ELife, 2021, 10,	6.0	27
30	A TGFβ–miR-182–BRCA1 axis controls the mammary differentiation hierarchy. Science Signaling, 2016, 9, ra118.	3.6	23
31	Limited miR-17-92 overexpression drives hematologic malignancies. Leukemia Research, 2015, 39, 335-341.	0.8	19
32	Aneuploidy Advantages?. Science, 2008, 322, 692-693.	12.6	17
33	Identification of gene expression levels in primary melanoma associated with clinically meaningful characteristics. Melanoma Research, 2018, 28, 380-389.	1.2	17
34	The histone demethylase PHF8 regulates TGFβ signaling and promotes melanoma metastasis. Science Advances, 2022, 8, eabi7127.	10.3	17
35	Functional analysis of RPS27 mutations and expression in melanoma. Pigment Cell and Melanoma Research, 2020, 33, 466-479.	3.3	14
36	TYRP1 mRNA goes fishing for miRNAs in melanoma. Nature Cell Biology, 2017, 19, 1311-1312.	10.3	12

#	Article	IF	CITATIONS
37	Mutation burden as a potential prognostic marker of melanoma progression and survival Journal of Clinical Oncology, 2017, 35, 9567-9567.	1.6	12
38	Krüppel-like factor 4 (KLF4) regulates the miR-183~96~182 cluster under physiologic and pathologic conditions. Oncotarget, 2017, 8, 26298-26311.	1.8	12
39	Treatment with therapeutic anticoagulation is not associated with immunotherapy response in advanced cancer patients. Journal of Translational Medicine, 2021, 19, 47.	4.4	10
40	In vivo Modeling and Molecular Characterization: A Path Toward Targeted Therapy of Melanoma Brain Metastasis. Frontiers in Oncology, 2013, 3, 127.	2.8	9
41	Tsc1 Regulates the Proliferation Capacity of Bone-Marrow Derived Mesenchymal Stem Cells. Cells, 2020, 9, 2072.	4.1	7
42	Expression of miR-16 is not a suitable reference for analysis of serum microRNAs in melanoma patients. Journal of Biomedical Science and Engineering, 2012, 05, 647-651.	0.4	4
43	In Vivo miRNA Decoy Screen Reveals miR-124a as a Suppressor of Melanoma Metastasis. Frontiers in Oncology, 2022, 12, 852952.	2.8	2
44	Characterization of MicroRNAs Regulating FOXO Expression. Methods in Molecular Biology, 2019, 1890, 13-28.	0.9	1
45	Targeting BET proteins in melanoma: A novel treatment approach Journal of Clinical Oncology, 2013, 31, 9091-9091.	1.6	1
46	Abstract A12: Histone variant H2A.Z.2 mediates proliferation and drug sensitivity of malignant melanoma. , 2015, , .		1
47	A Robust Discovery Platform for the Identification of Novel Mediators of Melanoma Metastasis. Journal of Visualized Experiments, 2022, , .	0.3	1
48	Human genes differ by their UV sensitivity estimated through analysis of UVâ€induced silent mutations in melanoma. Human Mutation, 2020, 41, 1751-1760.	2.5	0
49	Abstract LB-342: MicroRNA-130b contributes to mesenchymal differentiation and leiomyosarcomagenesis. , 2011, , .		0
50	Abstract LB-340: Early alterations of microRNA expression predict and functionally impact melanoma metastasis. , 2011, , .		0
51	Abstract 425: Targeting embryonic signaling pathways in melanoma. , 2012, , .		0
52	Newmouse models of melanoma metastasis and differences in brain tropism and metastatic growth pattern Journal of Clinical Oncology, 2012, 30, e19015-e19015.	1.6	0
53	MicroRNA alterations associated with <i>BRAF</i> status in melanoma Journal of Clinical Oncology, 2012, 30, 8565-8565.	1.6	0
54	Early alterations of microRNA expression to predict and modulate melanoma metastasis Journal of Clinical Oncology, 2012, 30, 8550-8550.	1.6	0

#	Article	IF	CITATIONS
55	Identification of melanoma-specific alterations in cell surface glycosylation Journal of Clinical Oncology, 2012, 30, e19018-e19018.	1.6	0
56	Melanoma recurrence risk stratification using Bayesian systems biology modeling Journal of Clinical Oncology, 2013, 31, 9089-9089.	1.6	0
57	Preclinical testing supports combined BET and BRAF inhibition as a promising therapeutic strategy for melanoma Journal of Clinical Oncology, 2014, 32, 9072-9072.	1.6	Ο
58	Abstract 3708: microRNAs involved in BRAF inhibitor resistance. , 2014, , .		0
59	Targeted next-generation sequencing of melanoma patient samples to reveal mutations in non-protein coding regions of targetable oncogenes Journal of Clinical Oncology, 2016, 34, 9559-9559.	1.6	0
60	Genomic characterization of acral lentiginous melanoma: Identification of altered metabolism as a potential therapeutic target Journal of Clinical Oncology, 2016, 34, 9524-9524.	1.6	0