Guido F Pauli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7670721/publications.pdf

Version: 2024-02-01

255 papers 13,779 citations

23567 58 h-index 28297 105 g-index

275 all docs

275 docs citations

times ranked

275

14367 citing authors

#	Article	IF	CITATIONS
1	Paradoxical effects of galloyl motifs in the interactions of proanthocyanidins with collagenâ€ich dentin. Journal of Biomedical Materials Research - Part A, 2022, 110, 196-203.	4.0	2
2	Investigation of red clover (Trifolium pratense) isoflavonoid residual complexity by off-line CCS-qHNMR. Fìtoterapìâ, 2022, 156, 105016.	2.2	5
3	Selective Preparation and High Dynamic-Range Analysis of Cannabinoids in "CBD Oil―and Other <i>Cannabis sativa</i> Preparations. Journal of Natural Products, 2022, 85, 634-646.	3.0	8
4	Proanthocyanidin Tetramers and Pentamers from <i>Cinnamomum verum</i> Bark and Their Dentin Biomodification Bioactivities. Journal of Natural Products, 2022, 85, 391-404.	3.0	2
5	Cannabidiol inhibits SARS-CoV-2 replication through induction of the host ER stress and innate immune responses. Science Advances, 2022, 8, .	10.3	77
6	Pharmaceutical analysis by NMR can accommodate strict impurity thresholds: The case of choline. Journal of Pharmaceutical and Biomedical Analysis, 2022, 214, 114709.	2.8	7
7	Cannabidiol inhibits SARS-CoV-2 replication through induction of the host ER stress and innate immune responses Science Advances, 2022, , eabi6110.	10.3	11
8	Galloylated proanthocyanidins in dentin matrix exhibit biocompatibility and induce differentiation in dental stem cells. Journal of Bioactive and Compatible Polymers, 2022, 37, 220-230.	2.1	1
9	Quantum mechanical NMR full spin analysis in pharmaceutical identity testing and quality control. Journal of Pharmaceutical and Biomedical Analysis, 2021, 192, 113601.	2.8	15
10	Quantitative NMR (qNMR) for pharmaceutical analysis: The pioneering work of George Hanna at the US FDA. Magnetic Resonance in Chemistry, 2021, 59, 7-15.	1.9	22
11	Isolation and Pharmacological Characterization of Six Opioidergic <i>Picralima nitida</i> Alkaloids. Journal of Natural Products, 2021, 84, 71-80.	3.0	15
12	NMR-Based Quantum Mechanical Analysis Builds Trust and Orthogonality in Structural Analysis: The Case of a Bisdesmosidic Triglycoside as <i>Withania somnifera</i> Aerial Parts Marker. Journal of Natural Products, 2021, 84, 836-845.	3.0	8
13	The Untargeted Capability of NMR Helps Recognizing Nefarious Adulteration in Natural Products. Journal of Natural Products, 2021, 84, 846-856.	3.0	2
14	Oligomeric proanthocyanidins inhibit endogenous enzymatic activity of deciduous carious dentin. Pediatric Dental Journal, 2021, 31, 73-79.	0.7	1
15	Prenylated Coumaric Acids from <i>Artemisia scoparia </i> Beneficially Modulate Adipogenesis. Journal of Natural Products, 2021, 84, 1078-1086.	3.0	3
16	Plain ¹ H nuclear magnetic resonance analysis streamlines the quality control of antiviral favipiravir and congeneric World Health Organization essential medicines. Magnetic Resonance in Chemistry, 2021, 59, 746-751.	1.9	3
17	Silica Gel-mediated Oxidation of Prenyl Motifs Generates Natural Product-Like Artifacts. Planta Medica, 2021, 87, 998-1007.	1.3	2
18	Auto-hydrolysis of red clover as "green―approach to (iso)flavonoid enriched products. Fìtoterapìâ, 2021, 152, 104878.	2.2	3

#	Article	IF	Citations
19	Tandem of Countercurrent Separation and qHNMR Enables Gravimetric Analyses: Absolute Quantitation of the <i>RhodiolaÂrosea</i> ÀMetabolome. Analytical Chemistry, 2021, 93, 11701-11709.	6.5	6
20	Rufomycin Exhibits Dual Effects Against Mycobacterium abscessus Infection by Inducing Host Defense and Antimicrobial Activities. Frontiers in Microbiology, 2021, 12, 695024.	3.5	3
21	The qNMR Summit 5.0: Proceedings and Status of qNMRÂTechnology. Analytical Chemistry, 2021, 93, 12162-12169.	6.5	7
22	Unveiling structure–activity relationships of proanthocyanidins with dentin collagen. Dental Materials, 2021, 37, 1633-1644.	3.5	11
23	Accurate and Precise External Calibration Enhances the Versatility of Quantitative NMR (qNMR). Analytical Chemistry, 2021, 93, 2733-2741.	6.5	14
24	Rufomycins or llamycins: Naming Clarifications and Definitive Structural Assignments. Journal of Natural Products, 2021, 84, 2644-2663.	3.0	10
25	Do Certain Flavonoid IMPS Have a Vital Function?. Frontiers in Nutrition, 2021, 8, 762753.	3.7	8
26	Linear regression analysis of silychristin A, silybin A and silybin B contents in Silybum marianum. Natural Product Research, 2020, 34, 305-310.	1.8	2
27	NMR reveals an undeclared constituent in custom synthetic peptides. Journal of Pharmaceutical and Biomedical Analysis, 2020, 178, 112915.	2.8	11
28	NMR based quantitation of cycloartane triterpenes in black cohosh extracts. FÃ-toterapÃ-â, 2020, 141, 104467.	2.2	5
29	Improving natural product research translation: From source to clinical trial. FASEB Journal, 2020, 34, 41-65.	0.5	45
30	Differentiation of Actaea species by NMR metabolomics analysis. Fìtoterapìâ, 2020, 146, 104686.	2.2	5
31	No Clinically Relevant Pharmacokinetic Interactions of a Red Clover Dietary Supplement with Cytochrome P450 Enzymes in Women. Journal of Agricultural and Food Chemistry, 2020, 68, 13929-13939.	5.2	5
32	6-Prenylnaringenin from Hops Disrupts ERα-Mediated Downregulation of <i>CYP1A1</i> to Facilitate Estrogen Detoxification. Chemical Research in Toxicology, 2020, 33, 2793-2803.	3.3	4
33	Proanthocyanidin Block Arrays (PACBAR) for Comprehensive Capture and Delineation of Proanthocyanidin Structures. Journal of Agricultural and Food Chemistry, 2020, 68, 13541-13549.	5.2	10
34	The Essential Medicinal Chemistry of Cannabidiol (CBD). Journal of Medicinal Chemistry, 2020, 63, 12137-12155.	6.4	79
35	SAR Study on Estrogen Receptor $\hat{l}\pm\hat{l}^2$ Activity of (Iso)flavonoids: Importance of Prenylation, C-Ring (Un)Saturation, and Hydroxyl Substituents. Journal of Agricultural and Food Chemistry, 2020, 68, 10651-10663.	5.2	23
36	Targeting Trimeric and Tetrameric Proanthocyanidins of <i>Cinnamomum verum</i> Bark as Bioactives for Dental Therapies. Journal of Natural Products, 2020, 83, 3287-3297.	3.0	5

#	Article	IF	Citations
37	A dynamic mechanical method to assess bulk viscoelastic behavior of the dentin extracellular matrix. Dental Materials, 2020, 36, 1536-1543.	3.5	11
38	Selective Chlorophyll Removal Method to "Degreen―Botanical Extracts. Journal of Natural Products, 2020, 83, 1846-1858.	3.0	8
39	Quantum Mechanics-Based Structure Analysis of Cyclic Monoterpene Glycosides from <i>Rhodiola rosea</i> . Journal of Natural Products, 2020, 83, 1950-1959.	3.0	11
40	Tri- and Tetrameric Proanthocyanidins with Dentin Bioactivities from <i>Pinus massoniana</i> Journal of Organic Chemistry, 2020, 85, 8462-8479.	3.2	14
41	Rare A-Type, Spiro-Type, and Highly Oligomeric Proanthocyanidins from <i>Pinus massoniana </i> Organic Letters, 2020, 22, 5304-5308.	4.6	14
42	Antimycobacterial Rufomycin Analogues from <i>Streptomyces atratus</i> Strain MJM3502. Journal of Natural Products, 2020, 83, 657-667.	3.0	28
43	Classification of Flavonoid Metabolomes via Data Mining and Quantification of Hydroxyl NMR Signals. Analytical Chemistry, 2020, 92, 4954-4962.	6.5	10
44	Effect of dentin biomodification delivered by experimental acidic and neutral primers on resin adhesion. Journal of Dentistry, 2020, 99, 103354.	4.1	5
45	Pharmacokinetic Interactions of a Hop Dietary Supplement with Drug Metabolism in Perimenopausal and Postmenopausal Women. Journal of Agricultural and Food Chemistry, 2020, 68, 5212-5220.	5.2	12
46	Structure of the N-terminal domain of ClpC1 in complex with the antituberculosis natural product ecumicin reveals unique binding interactions. Acta Crystallographica Section D: Structural Biology, 2020, 76, 458-471.	2.3	23
47	The value of universally available raw NMR data for transparency, reproducibility, and integrity in natural product research. Natural Product Reports, 2019, 36, 35-107.	10.3	92
48	Suadimins A–C, Unprecedented Dimeric Quinoline Alkaloids with Antimycobacterial Activity from <i>Melodinus suaveolens</i>). Organic Letters, 2019, 21, 7065-7068.	4.6	20
49	Strategies in anti-Mycobacterium tuberculosis drug discovery based on phenotypic screening. Journal of Antibiotics, 2019, 72, 719-728.	2.0	50
50	Formation of $(2 < i > R < /i >)$ - and $(2 < i > S < /i >)$ -8-Prenylnaringenin Glucuronides by Human UDP-Glucuronosyltransferases. Journal of Agricultural and Food Chemistry, 2019, 67, 11650-11656.	5.2	5
51	Enhancing Natural Product Clinical Trials (P13-037-19). Current Developments in Nutrition, 2019, 3, nzz036.P13-037-19.	0.3	2
52	Proanthocyanidin Dimers and Trimers from <i>Vitis vinifera</i> Provide Diverse Structural Motifs for the Evaluation of Dentin Biomodification. Journal of Natural Products, 2019, 82, 2387-2399.	3.0	14
53	Studying Mass Balance and the Stability of (<i>Z</i>)-Ligustilide from <i>Angelica sinensis</i> Helps to Bridge a Botanical Instability–Bioactivity Chasm. Journal of Natural Products, 2019, 82, 2400-2408.	3.0	13
54	Rufomycin Targets ClpC1 Proteolysis in Mycobacterium tuberculosis and M. abscessus. Antimicrobial Agents and Chemotherapy, 2019, 63 , .	3.2	68

#	Article	IF	CITATIONS
55	Preparation of DESIGNER extracts of red clover (Trifolium pratense L.) by centrifugal partition chromatography. Journal of Chromatography A, 2019, 1605, 360277.	3.7	14
56	Dynamics of the isoflavone metabolome of traditional preparations of Trifolium pratense L Journal of Ethnopharmacology, 2019, 238, 111865.	4.1	17
57	High-Resolution Structure of ClpC1-Rufomycin and Ligand Binding Studies Provide a Framework to Design and Optimize Anti-Tuberculosis Leads. ACS Infectious Diseases, 2019, 5, 829-840.	3.8	40
58	Selective Depletion and Enrichment of Constituents in "Curcumin―and Other <i>Curcuma longa</i> Preparations. Journal of Natural Products, 2019, 82, 621-630.	3.0	16
59	Preparation of flavone di-C-glycoside isomers from Jian-Gu injection (Premna fulva Craib.) using recycling counter-current chromatography. Journal of Chromatography A, 2019, 1599, 180-186.	3.7	17
60	Quality Control of Therapeutic Peptides by ¹ H NMR HiFSA Sequencing. Journal of Organic Chemistry, 2019, 84, 3055-3073.	3.2	18
61	The DESIGNER Approach Helps Decipher the Hypoglycemic Bioactive Principles of <i>Artemisia dracunculus</i> (Russian Tarragon). Journal of Natural Products, 2019, 82, 3321-3329.	3.0	12
62	Evidence to the role of interflavan linkages and galloylation of proanthocyanidins at sustaining long-term dentin biomodification. Dental Materials, 2019, 35, 328-334.	3.5	33
63	The Multiple Biological Targets of Hops and Bioactive Compounds. Chemical Research in Toxicology, 2019, 32, 222-233.	3.3	60
64	Natural Deep Eutectic Solvents: Properties, Applications, and Perspectives. Journal of Natural Products, 2018, 81, 679-690.	3.0	719
65	Pharmacognosy in the digital era: shifting to contextualized metabolomics. Current Opinion in Biotechnology, 2018, 54, 57-64.	6.6	34
66	The influence of natural deep eutectic solvents on bioactive natural products: studying interactions between a hydrogel model and Schisandra chinensis metabolites. Fìtoterapìâ, 2018, 127, 212-219.	2.2	21
67	Estrogen Receptor (ER) Subtype Selectivity Identifies 8-Prenylapigenin as an ER \hat{l}^2 Agonist from <i>Glycyrrhiza inflata</i> and Highlights the Importance of Chemical and Biological Authentication. Journal of Natural Products, 2018, 81, 966-975.	3.0	20
68	Centrifugal partition chromatography enables selective enrichment of trimeric and tetrameric proanthocyanidins for biomaterial development. Journal of Chromatography A, 2018, 1535, 55-62.	3.7	26
69	Integrated analytical assets aid botanical authenticity and adulteration management. Fìtoterapìâ, 2018, 129, 401-414.	2.2	49
70	Evidence for Chemopreventive and Resilience Activity of Licorice: <i>Glycyrrhiza Glabra</i> and G. <i>Inflata</i> Extracts Modulate Estrogen Metabolism in ACI Rats. Cancer Prevention Research, 2018, 11, 819-830.	1.5	12
71	Residual Complexity Does Impact Organic Chemistry and Drug Discovery: The Case of Rufomyazine and Rufomycin. Journal of Organic Chemistry, 2018, 83, 6664-6672.	3.2	24
72	Countercurrent separation assisted identification of two mammalian steroid hormones in Vitex negundo. Journal of Chromatography A, 2018, 1553, 108-115.	3.7	4

#	Article	IF	CITATIONS
73	Computerâ€assisted ¹ H NMR analysis of the antiâ€tuberculosis drug lead ecumicin. Magnetic Resonance in Chemistry, 2017, 55, 239-244.	1.9	10
74	Absolute Configuration of Native Oligomeric Proanthocyanidins with Dentin Biomodification Potency. Journal of Organic Chemistry, 2017, 82, 1316-1329.	3.2	32
75	Evolution of Quantitative Measures in NMR: Quantum Mechanical qHNMR Advances Chemical Standardization of a Red Clover (<i>Trifolium pratense</i>) Extract. Journal of Natural Products, 2017, 80, 634-647.	3.0	42
76	The Essential Medicinal Chemistry of Curcumin. Journal of Medicinal Chemistry, 2017, 60, 1620-1637.	6.4	1,291
77	Curcumin May (Not) Defy Science. ACS Medicinal Chemistry Letters, 2017, 8, 467-470.	2.8	30
78	Sweet spot matching: A thin-layer chromatography-based countercurrent solvent system selection strategy. Journal of Chromatography A, 2017, 1504, 46-54.	3.7	25
79	Isolation and structural characterization of dihydrobenzofuran congeners of licochalcone A. Fìtoterapìâ, 2017, 121, 6-15.	2.2	14
80	Oligomeric proanthocyanidins released from dentin induce regenerative dental pulp cell response. Acta Biomaterialia, 2017, 55, 262-270.	8.3	25
81	Chemotaxonomic and biosynthetic relationships between flavonolignans produced by Silybum marianum populations. Fìtoterapìâ, 2017, 119, 175-184.	2.2	15
82	Evaluation of estrogenic potency of a standardized hops extract on mammary gland biology and on MNU-induced mammary tumor growth in rats. Journal of Steroid Biochemistry and Molecular Biology, 2017, 174, 234-241.	2.5	11
83	Red Clover Aryl Hydrocarbon Receptor (AhR) and Estrogen Receptor (ER) Agonists Enhance Genotoxic Estrogen Metabolism. Chemical Research in Toxicology, 2017, 30, 2084-2092.	3.3	23
84	Structural Sequencing of Oligopeptides Aided by $\langle \sup 1 \langle \sup H \text{Sup} \rangle H \text{Hierative Full-Spin Analysis.}$ Journal of Natural Products, 2017, 80, 2630-2643.	3.0	9
85	The 9th International Countercurrent Chromatography Conference held at Dominican University, Chicago, USA, August 1–3, 2016. Journal of Chromatography A, 2017, 1520, 1-8.	3.7	19
86	Stereochemistry of a Second Riolozane and Other Diterpenoids from <i>Jatropha dioica</i> . Journal of Natural Products, 2017, 80, 2252-2262.	3.0	17
87	Cytochrome P450 inhibition by three licorice species and fourteen licorice constituents. European Journal of Pharmaceutical Sciences, 2017, 109, 182-190.	4.0	53
88	DESIGNER Extracts as Tools to Balance Estrogenic and Chemopreventive Activities of Botanicals for Women's Health. Journal of Natural Products, 2017, 80, 2284-2294.	3.0	24
89	A standardized Humulus lupulus (L.) ethanol extract partially prevents ovariectomy-induced bone loss in the rat without induction of adverse effects in the uterus. Phytomedicine, 2017, 34, 50-58.	5.3	24
90	In Vitro Activities of Enantiopure and Racemic $1\hat{a}\in^2$ -Acetoxychavicol Acetate against Clinical Isolates of Mycobacterium tuberculosis. Scientia Pharmaceutica, 2017, 85, 32.	2.0	7

#	Article	IF	Citations
91	Biochemical characterization and anti-inflammatory properties of an isothiocyanate-enriched moringa (Moringa oleifera) seed extract. PLoS ONE, 2017, 12, e0182658.	2.5	102
92	Dissemination of original NMR data enhances reproducibility and integrity in chemical research. Natural Product Reports, 2016, 33, 1028-1033.	10.3	35
93	Countercurrent assisted quantitative recovery of metabolites from plant-associated natural deep eutectic solvents. FÃ-toterapÃ-â, 2016, 112, 30-37.	2.2	44
94	Silybum marianum pericarp yields enhanced silymarin products. Fìtoterapìâ, 2016, 112, 136-143.	2.2	26
95	Hop (<i>Humulus lupulus</i> L.) Extract and 6-Prenylnaringenin Induce P450 1A1 Catalyzed Estrogen 2-Hydroxylation. Chemical Research in Toxicology, 2016, 29, 1142-1150.	3.3	40
96	Toward Structural Correctness: Aquatolide and the Importance of 1D Proton NMR FID Archiving. Journal of Organic Chemistry, 2016, 81, 878-889.	3.2	36
97	Holistic Analysis Enhances the Description of Metabolic Complexity in Dietary Natural Products. Advances in Nutrition, 2016, 7, 179-189.	6.4	14
98	Cycloartane Triterpenes from the Aerial Parts of <i> Actaea racemosa </i> > Journal of Natural Products, 2016, 79, 541-554.	3.0	12
99	Bioautography with TLC-MS/NMR for Rapid Discovery of Anti-tuberculosis Lead Compounds from Natural Sources. ACS Infectious Diseases, 2016, 2, 294-301.	3.8	43
100	Silymarin content in Silybum marianum populations growing in Egypt. Industrial Crops and Products, 2016, 83, 729-737.	5.2	43
101	Can Invalid Bioactives Undermine Natural Product-Based Drug Discovery?. Journal of Medicinal Chemistry, 2016, 59, 1671-1690.	6.4	195
102	Botanical Integrity: Part 2: Traditional and Modern Analytical Approaches. HerbalGram, 2016, 109, 60-64.	0.0	3
103	Solvent System Selection Strategies in Countercurrent Separation. Planta Medica, 2015, 81, 1582-1591.	1.3	41
104	Induction of NAD(P)H:Quinone Oxidoreductase 1 (NQO1) by Glycyrrhiza Species Used for Women's Health: Differential Effects of the Michael Acceptors Isoliquiritigenin and Licochalcone A. Chemical Research in Toxicology, 2015, 28, 2130-2141.	3.3	30
105	Digital NMR Profiles as Building Blocks: Assembling ¹ H Fingerprints of Steviol Glycosides. Journal of Natural Products, 2015, 78, 658-665.	3.0	18
106	The Generally Useful Estimate of Solvent Systems (GUESS) method enables the rapid purification of methylpyridoxine regioisomers by countercurrent chromatography. Journal of Chromatography A, 2015, 1426, 248-251.	3.7	26
107	Qualitative and quantitative evaluation of solvent systems for countercurrent separation. Journal of Chromatography A, 2015, 1377, 55-63.	3.7	45
108	Subtle Chemical Shifts Explain the NMR Fingerprints of Oligomeric Proanthocyanidins with High Dentin Biomodification Potency. Journal of Organic Chemistry, 2015, 80, 7495-7507.	3.2	44

#	Article	IF	CITATIONS
109	Real-Time Volumetric Phase Monitoring: Advancing Chemical Analysis by Countercurrent Separation. Analytical Chemistry, 2015, 87, 7418-7425.	6.5	8
110	Differential Effects of Glycyrrhiza Species on Genotoxic Estrogen Metabolism: Licochalcone A Downregulates P450 1B1, whereas Isoliquiritigenin Stimulates It. Chemical Research in Toxicology, 2015, 28, 1584-1594.	3.3	25
111	Countercurrent Separation of Natural Products: An Update. Journal of Natural Products, 2015, 78, 1765-1796.	3.0	241
112	The Cyclic Peptide Ecumicin Targeting ClpC1 Is Active against Mycobacterium tuberculosis In Vivo. Antimicrobial Agents and Chemotherapy, 2015, 59, 880-889.	3.2	148
113	Metabolite Profiling and Classification of DNA-Authenticated Licorice Botanicals. Journal of Natural Products, 2015, 78, 2007-2022.	3.0	43
114	Nitrogen-Containing Constituents of Black Cohosh: Chemistry, Structure Elucidation, and Biological Activities., 2015, 45, 31-75.		12
115	A galloylated dimeric proanthocyanidin from grape seed exhibits dentin biomodification potential. F¬toterapìâ, 2015, 101, 169-178.	2.2	42
116	Botanical Integrity: The Importance of the Integration of Chemical, Biological, and Botanical Analyses, and the Role of DNA Barcoding. HerbalGram, 2015, 106, 58-60.	0.0	1
117	Distinguishing Vaccinium Species by Chemical Fingerprinting Based on NMR Spectra, Validated with Spectra Collected in Different Laboratories. Planta Medica, 2014, 80, 732-739.	1.3	11
118	Biological and chemical standardization of a hop (<i>Humulus lupulus</i>) botanical dietary supplement. Biomedical Chromatography, 2014, 28, 729-734.	1.7	27
119	Pharmacokinetics of prenylated hop phenols in women following oral administration of a standardized extract of hops. Molecular Nutrition and Food Research, 2014, 58, 1962-1969.	3.3	89
120	<i>K</i> -Targeted Metabolomic Analysis Extends Chemical Subtraction to DESIGNER Extracts: Selective Depletion of Extracts of Hops (<i>Humulus lupulus</i>). Journal of Natural Products, 2014, 77, 2595-2604.	3.0	18
121	Mimicking the Hierarchical Functions of Dentin Collagen Cross-Links with Plant Derived Phenols and Phenolic Acids. Langmuir, 2014, 30, 14887-14893.	3 . 5	64
122	Speciesâ€specific Standardisation of Licorice by Metabolomic Profiling of Flavanones and Chalcones. Phytochemical Analysis, 2014, 25, 378-388.	2.4	21
123	Universal quantitative NMR analysis of complex natural samples. Current Opinion in Biotechnology, 2014, 25, 51-59.	6.6	272
124	Orthogonal analytical methods for botanical standardization: Determination of green tea catechins by qNMR and LC–MS/MS. Journal of Pharmaceutical and Biomedical Analysis, 2014, 93, 59-67.	2.8	46
125	A novel indigoid anti-tuberculosis agent. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 268-270.	2.2	9
126	Dentin biomodification: strategies, renewable resources and clinical applications. Dental Materials, 2014, 30, 62-76.	3. 5	205

#	Article	IF	Citations
127	Quantification of a Botanical Negative Marker without an Identical Standard: Ginkgotoxin in <i>Ginkgo biloba </i> Journal of Natural Products, 2014, 77, 611-617.	3.0	31
128	Discovery and Characterization of the Tuberculosis Drug Lead Ecumicin. Organic Letters, 2014, 16, 6044-6047.	4.6	50
129	Orthogonal Analysis Underscores the Relevance of Primary and Secondary Metabolites in Licorice. Journal of Natural Products, 2014, 77, 1806-1816.	3.0	19
130	Importance of Purity Evaluation and the Potential of Quantitative $\langle \sup 1 \langle \sup \rangle H \rangle$ NMR as a Purity Assay. Journal of Medicinal Chemistry, 2014, 57, 9220-9231.	6.4	289
131	2D NMR Barcoding and Differential Analysis of Complex Mixtures for Chemical Identification: The <i>Actaea</i> Triterpenes. Analytical Chemistry, 2014, 86, 3964-3972.	6.5	27
132	Cytotoxic Constituents from <i>Lobaria scrobiculata</i> and a Comparison of Two Bioassays for Their Evaluation. Journal of Natural Products, 2014, 77, 1069-1073.	3.0	15
133	Airborne Antituberculosis Activity of <i>Eucalyptus citriodora</i> Essential Oil. Journal of Natural Products, 2014, 77, 603-610.	3.0	16
134	Galloyl moieties enhance the dentin biomodification potential of plant-derived catechins. Acta Biomaterialia, 2014, 10, 3288-3294.	8.3	103
135	Inhibition of human cytochrome P450 enzymes by hops (Humulus lupulus) and hop prenylphenols. European Journal of Pharmaceutical Sciences, 2014, 53, 55-61.	4.0	35
136	New finding of an anti-TB compound in the genus Marsypopetalum (Annonaceae) from a traditional herbal remedy of Laos. Journal of Ethnopharmacology, 2014, 151, 903-911.	4.1	23
137	Essential Parameters for Structural Analysis and Dereplication by ¹ H NMR Spectroscopy. Journal of Natural Products, 2014, 77, 1473-1487.	3.0	77
138	The antibiofilm activity of lingonberry flavonoids against oral pathogens is a case connected to residual complexity. FÃ-toterapÃ-â, 2014, 97, 78-86.	2.2	34
139	Pharmacognosy of Black Cohosh: The Phytochemical and Biological Profile of a Major Botanical Dietary Supplement. Progress in the Chemistry of Organic Natural Products, 2014, 99, 1-68.	1.1	13
140	Validation of a Generic Quantitative $\langle \sup 1 \langle \sup H \mid MR \mid Method \mid Froducts \mid Analysis \mid Fhytochemical Analysis, 2013, 24, 581-597.$	2.4	56
141	Phytochemistry and biological properties of glabridin. Fìtoterapìâ, 2013, 90, 160-184.	2.2	190
142	Proton Fingerprints Portray Molecular Structures: Enhanced Description of the ¹ H NMR Spectra of Small Molecules. Journal of Organic Chemistry, 2013, 78, 9963-9968.	3.2	44
143	Rapid determination of growth inhibition of Mycobacterium tuberculosis by GC–MS/MS quantitation of tuberculostearic acid. Tuberculosis, 2013, 93, 322-329.	1.9	8
144	Chlorinated Coumarins from the Polypore Mushroom <i>Fomitopsis officinalis</i> and Their Activity against <i>Mycobacterium tuberculosis</i> Journal of Natural Products, 2013, 76, 1916-1922.	3.0	38

#	Article	IF	CITATIONS
145	Hytramycins V and I, Anti-Mycobacterium tuberculosisHexapeptides from aStreptomyces hygroscopicusStrain. Journal of Natural Products, 2013, 76, 2009-2018.	3.0	18
146	Lipidated steroid saponins from Dioscorea villosa (wild yam). Fìtoterapìâ, 2013, 91, 113-124.	2.2	5
147	Quantitative Purity–Activity Relationships of Natural Products: The Case of Anti-Tuberculosis Active Triterpenes from <i>Oplopanax horridus</i>). Journal of Natural Products, 2013, 76, 413-419.	3.0	27
148	HiFSA Fingerprinting Applied to Isomers with Near-Identical NMR Spectra: The Silybin/Isosilybin Case. Journal of Organic Chemistry, 2013, 78, 2827-2839.	3.2	84
149	¹ Hâ€NMR Fingerprinting of <i>Vaccinium vitisâ€idaea</i> Flavonol Glycosides. Phytochemical Analysis, 2013, 24, 476-483.	2.4	16
150	Dynamic Residual Complexity of the Isoliquiritigenin–Liquiritigenin Interconversion During Bioassay. Journal of Agricultural and Food Chemistry, 2013, 61, 2146-2157.	5.2	46
151	Absolute configuration of naturally occurring glabridin. Acta Crystallographica Section C: Crystal Structure Communications, 2013, 69, 1212-1216.	0.4	2
152	Differential regulation of detoxification enzymes in hepatic and mammary tissue by hops (<i><scp>H</scp>umulus lupulus</i>) in vitro and in vivo. Molecular Nutrition and Food Research, 2013, 57, 1055-1066.	3.3	36
153	Evaluation of Estrogenic Activity of Licorice Species in Comparison with Hops Used in Botanicals for Menopausal Symptoms. PLoS ONE, 2013, 8, e67947.	2.5	75
154	Diarylheptanoids from <i>Dioscorea villosa</i> (Wild Yam). Journal of Natural Products, 2012, 75, 2168-2177.	3.0	40
155	Unbiased evaluation of bioactive secondary metabolites in complex matrices. Fìtoterapìâ, 2012, 83, 1218-1225.	2.2	65
156	Dereplication, Residual Complexity, and Rational Naming: The Case of the <i>Actaea</i> Triterpenes. Journal of Natural Products, 2012, 75, 432-443.	3.0	40
157	Hops (<i>Humulus lupulus</i>) Inhibits Oxidative Estrogen Metabolism and Estrogen-Induced Malignant Transformation in Human Mammary Epithelial cells (MCF-10A). Cancer Prevention Research, 2012, 5, 73-81.	1.5	39
158	The Tandem of Full Spin Analysis and qHNMR for the Quality Control of Botanicals Exemplified withGinkgo biloba. Journal of Natural Products, 2012, 75, 238-248.	3.0	70
159	Quantitative $\langle \sup 1 \langle \sup H \rangle$ NMR. Development and Potential of an Analytical Method: An Update. Journal of Natural Products, 2012, 75, 834-851.	3.0	296
160	Separation of Natural Products by Countercurrent Chromatography. Methods in Molecular Biology, 2012, 864, 221-254.	0.9	18
161	Analysis and Purification of Bioactive Natural Products: The AnaPurNa Study. Journal of Natural Products, 2012, 75, 1243-1255.	3.0	61
162	Complete ¹ H NMR spectral analysis of ten chemical markers of <i>Ginkgo biloba</i> Magnetic Resonance in Chemistry, 2012, 50, 569-575.	1.9	81

#	Article	IF	CITATIONS
163	Design of countercurrent separation of Ginkgo biloba terpene lactones by nuclear magnetic resonance. Journal of Chromatography A, 2012, 1242, 26-34.	3.7	26
164	Purification of berry flavonol glycosides by long-bed gel permeation chromatography. Journal of Chromatography A, 2012, 1244, 20-27.	3.7	12
165	Integrated standardization concept for Angelica botanicals using quantitative NMR. Fìtoterapìâ, 2012, 83, 18-32.	2.2	28
166	Mass spectrometric dereplication of nitrogen-containing constituents of black cohosh (Cimicifuga) Tj ETQq0 0 (O rgBT /Ον 2.2	erlock 10 Tf 5
167	Screening Natural Products for Inhibitors of Quinone Reductase-2 Using Ultrafiltration LCâ^'MS. Analytical Chemistry, 2011, 83, 1048-1052.	6.5	70
168	Stereochemical Analysis of Leubethanol, an Anti-TB-Active Serrulatane, fromLeucophyllum frutescens. Journal of Natural Products, 2011, 74, 1842-1850.	3.0	60
169	<i>In vitro</i> metabolic interactions between black cohosh (<i>Cimicifuga racemosa</i>) and tamoxifen via inhibition of cytochromes P450 2D6 and 3A4. Xenobiotica, 2011, 41, 1021-1030.	1.1	31
170	Editorial. Fìtoterapìâ, 2011, 82, 1-4.	2.2	1
171	Phytoconstituents from Vitex agnus-castus fruits. Fìtoterapìâ, 2011, 82, 528-533.	2.2	60
172	Opioidergic mechanisms underlying the actions of Vitex agnus-castus L Biochemical Pharmacology, 2011, 81, 170-177.	4.4	53
173	Trypanoside, anti-tuberculosis, leishmanicidal, and cytotoxic activities of tetrahydrobenzothienopyrimidines. Bioorganic and Medicinal Chemistry, 2010, 18, 2880-2886.	3.0	36
174	Occurrence of Progesterone and Related Animal Steroids in Two Higher Plants [,] . Journal of Natural Products, 2010, 73, 338-345.	3.0	43
175	Solubility study of phytochemical cross-linking agents on dentin stiffness. Journal of Dentistry, 2010, 38, 431-436.	4.1	50
176	Structure and Anti-TB Activity of Trachylobanes from the Liverwort <i>Jungermannia exsertifolia ssp. cordifolia </i> . Journal of Natural Products, 2010, 73, 656-663.	3.0	37
177	Sesquiterpenes from <i>Oplopanax horridus</i> . Journal of Natural Products, 2010, 73, 563-567.	3.0	49
178	Dynamic Residual Complexity of Natural Products by qHNMR: Solution Stability of Desmethylxanthohumol. Planta Medica, 2009, 75, 757-762.	1.3	26
179	Phytochemistry of cimicifugic acids and associated bases in <i>Cimicifuga racemosa</i> root extracts. Phytochemical Analysis, 2009, 20, 120-133.	2.4	30
180	GUESSmix-guided optimization of elution–extrusion counter-current separations. Journal of Chromatography A, 2009, 1216, 4225-4231.	3.7	36

#	Article	IF	Citations
181	Binary concepts and standardization in counter-current separation technology. Journal of Chromatography A, 2009, 1216, 4237-4244.	3.7	5
182	Guanidine Alkaloids and Pictetâ'Spengler Adducts from Black Cohosh (<i>Cimicifuga racemosa</i> Journal of Natural Products, 2009, 72, 433-437.	3.0	36
183	Safety and efficacy of black cohosh and red clover for the management of vasomotor symptoms. Menopause, 2009, 16, 1156-1166.	2.0	159
184	Antiâ€TB polyynes from the roots of <i>Angelica sinensis</i> . Phytotherapy Research, 2008, 22, 878-882.	5.8	38
185	An experimental implementation of chemical subtraction. Journal of Pharmaceutical and Biomedical Analysis, 2008, 46, 692-698.	2.8	17
186	Modification of the side chain of micromolide, an anti-tuberculosis natural product. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5311-5315.	2.2	13
187	In vivo estrogenic comparisons of Trifolium pratense (red clover) Humulus lupulus (hops), and the pure compounds isoxanthohumol and 8-prenylnaringenin. Chemico-Biological Interactions, 2008, 176, 30-39.	4.0	78
188	Countercurrent Separation of Natural Products. Journal of Natural Products, 2008, 71, 1489-1508.	3.0	180
189	Purityâ^'Activity Relationships of Natural Products: The Case of Anti-TB Active Ursolic Acid. Journal of Natural Products, 2008, 71, 1742-1748.	3.0	59
190	Performance Characteristics of Countercurrent Separation in Analysis of Natural Products of Agricultural Significance. Journal of Agricultural and Food Chemistry, 2008, 56, 19-28.	5.2	54
191	In Vitro Serotonergic Activity of Black Cohosh and Identification of <i>N</i> _{ï%} -Methylserotonin as a Potential Active Constituent. Journal of Agricultural and Food Chemistry, 2008, 56, 11718-11726.	5.2	79
192	<i>Angelica sinensis</i> and Its Alkylphthalides Induce the Detoxification Enzyme NAD(P)H: Quinone Oxidoreductase 1 by Alkylating Keap1. Chemical Research in Toxicology, 2008, 21, 1939-1948.	3.3	65
193	Dynamic Nature of the Ligustilide Complex. Journal of Natural Products, 2008, 71, 1604-1611.	3.0	38
194	High-Content Screening and Mechanism-Based Evaluation of Estrogenic Botanical Extracts. Combinatorial Chemistry and High Throughput Screening, 2008, 11, 283-293.	1.1	17
195	The University of Illinois at Chicago/National Institutes of Health Center for Botanical Dietary Supplements Research for Women's Health: from plant to clinical use. American Journal of Clinical Nutrition, 2008, 87, 504S-508S.	4.7	23
196	Low-Oxygen-Recovery Assay for High-Throughput Screening of Compounds against Nonreplicating Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2007, 51, 1380-1385.	3.2	286
197	A Routine Experimental Protocol for qHNMR Illustrated with Taxol⊥. Journal of Natural Products, 2007, 70, 589-595.	3.0	116
198	Reciprocal Symmetry Plots as a Representation of Countercurrent Chromatograms. Analytical Chemistry, 2007, 79, 2320-2324.	6.5	38

#	Article	IF	Citations
199	Chlorination DiversifiesCimicifuga racemosaTriterpene Glycosides. Journal of Natural Products, 2007, 70, 1016-1023.	3.0	14
200	Coumaroyl Iridoids and a Depside from Cranberry (Vaccinium macrocarpon). Journal of Natural Products, 2007, 70, 253-258.	3.0	55
201	Elutionâ^Extrusion Countercurrent Chromatography:  Theory and Concepts in Metabolic Analysis. Analytical Chemistry, 2007, 79, 3371-3382.	6.5	134
202	Binding of the hop (Humulus lupulus L.) chalcone xanthohumol to cytosolic proteins in Caco-2 intestinal epithelial cells. Molecular Nutrition and Food Research, 2007, 51, 872-879.	3.3	50
203	Complete ¹ H NMR spectral fingerprint of huperzine A. Magnetic Resonance in Chemistry, 2007, 45, 878-882.	1.9	19
204	Advanced applications of counter-current chromatography in the isolation of anti-tuberculosis constituents from Dracaena angustifolia. Journal of Chromatography A, 2007, 1151, 169-174.	3.7	28
205	Rational development of solvent system families in counter-current chromatography. Journal of Chromatography A, 2007, 1151, 51-59.	3.7	127
206	Counter-current chromatography based analysis of synergy in an anti-tuberculosis ethnobotanical. Journal of Chromatography A, 2007, 1151, 211-215.	3.7	56
207	Seasonal Variation of Red Clover (Trifolium pratenseL., Fabaceae) Isoflavones and Estrogenic Activity. Journal of Agricultural and Food Chemistry, 2006, 54, 1277-1282.	5.2	100
208	The Vasodepressor Function of the Kidney: Further Characterization of Medullipin and a Second Hormone Designated Angiolysin. Hypertension Research, 2006, 29, 533-544.	2.7	3
209	Serotonergic Activity-Guided Phytochemical Investigation of the Roots of Angelica sinensis. Journal of Natural Products, 2006, 69, 536-541.	3.0	127
210	IDENTIFICATION OF HUMAN HEPATIC CYTOCHROME P450 ENZYMES INVOLVED IN THE METABOLISM OF 8-PRENYLNARINGENIN AND ISOXANTHOHUMOL FROM HOPS (HUMULUS LUPULUS L.). Drug Metabolism and Disposition, 2006, 34, 1152-1159.	3.3	96
211	The Chemical and Biologic Profile of a Red Clover (Trifolium pratense L.) Phase II Clinical Extract. Journal of Alternative and Complementary Medicine, 2006, 12, 133-139.	2.1	85
212	Ethnopharmacological evaluation of the informant consensus model on anti-tuberculosis claims among the Manus. Journal of Ethnopharmacology, 2006, 106, 82-89.	4.1	50
213	GABAergic phthalide dimers fromAngelica sinensis (Oliv.) Diels. Phytochemical Analysis, 2006, 17, 398-405.	2.4	25
214	Cimicifuga species identification by high performance liquid chromatography–photodiode array/mass spectrometric/evaporative light scattering detection for quality control of black cohosh products. Journal of Chromatography A, 2006, 1112, 241-254.	3.7	113
215	Development of an extraction method for mycobacterial metabolome analysis. Journal of Pharmaceutical and Biomedical Analysis, 2006, 41, 196-200.	2.8	38
216	Evidence-Based Herbal Medicine: Challenges in Efficacy and Safety Assessments. Annals of Traditional Chinese Medicine, 2006, , 11-26.	0.1	11

#	Article	IF	CITATIONS
217	Medullopressin: A New Pressor Activity from the Renal Medulla. Hypertension Research, 2005, 28, 827-836.	2.7	3
218	Quantitative1H NMR: Development and Potential of a Method for Natural Products Analysis§. Journal of Natural Products, 2005, 68, 133-149.	3.0	442
219	Factors in Maintaining Indigenous Knowledge Among Ethnic Communities of Manus island. Economic Botany, 2005, 59, 356-365.	1.7	98
220	Metabolism of xanthohumol and isoxanthohumol, prenylated flavonoids from hops (Humulus) Tj ETQq0 0 0 rgB	T /Qverloc	k 10 Tf 50 62.
221	Cyanogenic glycosides and menisdaurin from Guazuma ulmifolia, Ostrya virginiana, Tiquilia plicata, and Tiquilia canescens. Phytochemistry, 2005, 66, 1567-1580.	2.9	52
222	Anti-Tuberculosis Constituents from the Stem Bark of Micromelum hirsutum. Planta Medica, 2005, 71, 261-267.	1.3	80
223	CCC Sample Cutting for Isolation of Prenylated Phenolics from Hops. Journal of Liquid Chromatography and Related Technologies, 2005, 28, 1959-1969.	1.0	12
224	Synthesis of Cimiracemate B, A Phenylpropanoid found in Cimicifuga racemosa. Natural Product Research, 2005, 19, 287-290.	1.8	5
225	CCC in the Phytochemical Analysis of Antiâ€Tuberculosis Ethnobotanicals. Journal of Liquid Chromatography and Related Technologies, 2005, 28, 2017-2028.	1.0	12
226	Cimipronidine, a Cyclic Guanidine Alkaloid from Cimicifuga racemosa. Journal of Natural Products, 2005, 68, 1266-1270.	3.0	50
227	G.U.E.S.S.â€"A Generally Useful Estimate of Solvent Systems for CCC. Journal of Liquid Chromatography and Related Technologies, 2005, 28, 2777-2806.	1.0	252
228	Extraâ€Column Volume in CCC. Journal of Liquid Chromatography and Related Technologies, 2005, 28, 1799-1818.	1.0	13
229	Inhibition of UropathogenicEscherichia coliby Cranberry Juice:Â A New Antiadherence Assay. Journal of Agricultural and Food Chemistry, 2005, 53, 8940-8947.	5.2	52
230	Valerian extract and valerenic acid are partial agonists of the 5-HT5a receptor in vitro. Molecular Brain Research, 2005, 138, 191-197.	2.3	113
231	New perspectives on natural products in TB drug research. Life Sciences, 2005, 78, 485-494.	4.3	120
232	Xanthohumol Isolated from Humulus Iupulus Inhibits Menadione-Induced DNA Damage through Induction of Quinone Reductase. Chemical Research in Toxicology, 2005, 18, 1296-1305.	3.3	183
233	Comparison of the in Vitro Estrogenic Activities of Compounds from Hops (Humulus lupulus) and Red Clover (Trifolium pratense). Journal of Agricultural and Food Chemistry, 2005, 53, 6246-6253.	5.2	112
234	An NMR method towards the routine chiral determination of natural products. Phytochemical Analysis, 2004, 15, 213-219.	2.4	20

#	Article	IF	Citations
235	Estrogens and Congeners from Spent Hops (Humuluslupulus). Journal of Natural Products, 2004, 67, 2024-2032.	3.0	116
236	Evaluation of Glucoiberin Reference Material from Iberisamaraby Spectroscopic Fingerprinting. Journal of Natural Products, 2002, 65, 517-522.	3.0	23
237	Cyanogenic allosides and glucosides from Passiflora edulis and Carica papaya. Phytochemistry, 2002, 60, 873-882.	2.9	127
238	qNMR? a versatile concept for the validation of natural product reference compounds. Phytochemical Analysis, 2001, 12, 28-42.	2.4	134
239	Chiral key positions in Uzara steroids. Phytochemical Analysis, 2000, 11, 79-89.	2.4	14
240	α-Onocerin chloroform hemisolvate. Acta Crystallographica Section C: Crystal Structure Communications, 2000, 56, 1476-1477.	0.4	3
241	Comprehensive Spectroscopic Investigation of α-Onocerin. Planta Medica, 2000, 66, 299-302.	1.3	17
242	Comprehensive Spectroscopic Investigation of α-Onocerin. Planta Medica, 2000, 66, 299-302.	1.3	13
243	Prognoses of malignancy in cases of pheochromocytomas?. Urology, 2000, 56, 891.	1.0	1
244	Higher Order and Substituent Chemical Shift Effects in the Proton NMR of Glycosides. Journal of Natural Products, 2000, 63, 834-838.	3.0	48
245	Fukiic and Piscidic Acid Esters from the Rhizome of Cimicifuga racemosaand thein vitro Estrogenic Activity of Fukinolic Acid. Planta Medica, 1999, 65, 763-764.	1.3	107
246	Sulfates as novel steroid metabolites in higher plants. Phytochemistry, 1999, 52, 1075-1084.	2.9	16
247	Solvent effects in the structure dereplication of caffeoyl quinic acids. Magnetic Resonance in Chemistry, 1999, 37, 827-836.	1.9	63
248	Major Flavonoids fromArabidopsis thalianaLeavesâ€. Journal of Natural Products, 1999, 62, 1301-1303.	3.0	126
249	Metabolism of the tomato saponin α-tomatine by Gibberella pulicaris. Phytochemistry, 1998, 48, 1321-1328.	2.9	24
250	The Cardenolides of Speirantha convallarioides 1. Planta Medica, 1995, 61, 162-166.	1.3	19
251	Adoligoses, Oligosaccharides of Rare Sugars from Adonis aleppica. Journal of Natural Products, 1995, 58, 483-494.	3.0	10
252	Application of Soft Pulse 1D NMR: Sweroside from a Potential Native American Anti-TB Drug. Spectroscopy Letters, 1995, 28, 903-913.	1.0	10

Guido F Pauli

#	Article	IF	CITATIONS
253	Alepposides, Cardenolide Oligoglycosides from Adonis aleppica. Journal of Natural Products, 1993, 56, 67-75.	3.0	16
254	Aleppotrioloside, an aliphatic alcohol glycoside from Adonis aleppica. Phytochemistry, 1992, 31, 2522-2524.	2.9	6
255	The LOTUS initiative for open knowledge management in natural products research. ELife, 0, 11, .	6.0	90