Baifei Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7670363/publications.pdf

Version: 2024-02-01

236925 265206 2,086 42 99 25 citations h-index g-index papers 101 101 101 1057 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Quasimonochromatic Bright Gamma-ray Generation from Synchronized Compton Scattering via Azimuthal Spatial-Temporal Coupling. Physical Review Applied, 2022, 17, .	3.8	3
2	Improving the accuracy of hard photon emission by sigmoid sampling of the quantum-electrodynamic table in particle-in-cell Monte Carlo simulations. Physical Review E, 2022, 105, 025309.	2.1	2
3	Generation of dense and well-collimated positron beam via ultra-intense laser colliding with a flying plasma layer. Plasma Physics and Controlled Fusion, 2022, 64, 045008.	2.1	0
4	Triple-vortex bremsstrahlung. New Journal of Physics, 2022, 24, 043037.	2.9	1
5	Finite orbital-angular-momentum carried by the final electron and photon in plane-wave electron-nucleus bremsstrahlung. Physical Review Research, 2022, 4, .	3.6	O
6	High efficiency laser-driven proton sources using 3D-printed micro-structure. Communications Physics, 2022, 5, .	5. 3	7
7	Enhancement of vacuum diffraction by interference of signals produced by a probe x-ray free-electron laser with multiple transverse modes. Physical Review A, 2022, 106, .	2.5	2
8	Isolated intense half-cycle attosecond pulse generation with orbital angular momentum. Plasma Physics and Controlled Fusion, 2021, 63, 035013.	2.1	3
9	Vortex Harmonic Generation by Circularly Polarized Gaussian Beam Interacting with Tilted Target. Physical Review Applied, 2021, 16, .	3.8	8
10	New phase-matching selection rule to generate angularly isolated harmonics. High Power Laser Science and Engineering, $2021, 9, .$	4.6	5
11	Generation of relativistic positrons carrying intrinsic orbital angular momentum. Physical Review D, 2021, 104, .	4.7	6
12	Compressing magnetic field into a high-intensity electromagnetic field with a relativistic flying mirror. Optics Express, 2021, 29, 41121.	3.4	1
13	Twisted Breit-Wheeler electron-positron pair creation via vortex gamma photons. Physical Review Research, 2021, 3, .	3.6	6
14	Spin-to-orbital angular momentum conversion in harmonic generation driven by intense circularly polarized laser. New Journal of Physics, 2020, 22, 013054.	2.9	7
15	Spin-polarized proton beam generation from gas-jet targets by intense laser pulses. Physical Review E, 2020, 102, 011201.	2.1	17
16	High-repetition-rate few-attosecond high-quality electron beams generated from crystals driven by intense X-ray laser. Matter and Radiation at Extremes, 2020, 5, .	3.9	9
17	Spin-dependent two-photon Bragg scattering in the Kapitza-Dirac effect. Physical Review A, 2020, 102, .	2.5	5
18	XFEL beamline design for vacuum birefringence experiment. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 982, 164553.	1.6	8

#	Article	IF	CITATIONS
19	Driving positron beam acceleration with coherent transition radiation. Communications Physics, 2020, 3, .	5.3	11
20	Spin-dependent radiative deflection in the quantum radiation-reaction regime. New Journal of Physics, 2020, 22, 013007.	2.9	15
21	Spin Filter for Polarized Electron Acceleration in Plasma Wakefields. Physical Review Applied, 2020, 13,	3.8	15
22	Ultrafast measurements of ion temperature in high-energy-density plasmas by nuclear resonance fluorescence. Physics of Plasmas, 2019, 26, .	1.9	3
23	Vortex beam of tilted orbital angular momentum generated from grating. Plasma Physics and Controlled Fusion, 2019, 61, 105001.	2.1	6
24	Two-beam vacuum wave mixing using high-power laser and x-ray free-electron laser. Physical Review D, 2019, 100, .	4.7	6
25	Proton acceleration in a laser-induced relativistic electron vortex. Journal of Plasma Physics, 2019, 85, .	2.1	4
26	Polarized electron-beam acceleration driven by vortex laser pulses. New Journal of Physics, 2019, 21, 073052.	2.9	33
27	Monoenergetic proton beam accelerated by single reflection mechanism only during hole-boring stage. High Power Laser Science and Engineering, 2019, 7, .	4.6	6
28	Asymmetric optical vortex in plasma density gradient. Plasma Physics and Controlled Fusion, 2019, 61, 125003.	2.1	1
29	Polarized electron acceleration in beam-driven plasma wakefield based on density down-ramp injection. Physical Review E, 2019, 100, 043202.	2.1	27
30	Quantum reflection above the classical radiation-reaction barrier in the quantum electro-dynamics regime. Communications Physics, 2019, 2, .	5. 3	16
31	Spectrum tailoring of low charge-to-mass ion beam by the triple-stage acceleration mechanism. Physics of Plasmas, 2019, 26, .	1.9	9
32	Stimulated Raman sidescattering in intense laser produced plasmas with steep density gradients. Plasma Physics and Controlled Fusion, 2019, 61, 075009.	2.1	1
33	Relativistic laser driven electron accelerator using micro-channel plasma targets. Physics of Plasmas, 2019, 26, .	1.9	45
34	Leveraging radiation reaction via laser-driven plasma fields. Plasma Physics and Controlled Fusion, 2019, 61, 065007.	2.1	4
35	Angular momentum oscillation in spiral-shaped foil plasmas. New Journal of Physics, 2019, 21, 043022.	2.9	5
36	Single-pulse laser-electron collision within a micro-channel plasma target. Plasma Physics and Controlled Fusion, 2019, 61, 065019.	2.1	10

#	Article	IF	CITATIONS
37	The emission of \hat{I}^3 -Ray beams with orbital angular momentum in laser-driven micro-channel plasma target. Scientific Reports, 2019, 9, 18780.	3.3	10
38	New Optical Manipulation of Relativistic Vortex Cutter. Physical Review Letters, 2019, 122, 024801.	7.8	35
39	Proton array focused by a laser-irradiated mesh. Applied Physics Letters, 2019, 114, .	3.3	4
40	Terawatt-scale optical half-cycle attosecond pulses. Scientific Reports, 2018, 8, 2669.	3.3	70
41	Exploring vacuum birefringence based on a 100 PW laser and an x-ray free electron laser beam. Plasma Physics and Controlled Fusion, 2018, 60, 044002.	2.1	90
42	Relativistic magnetic reconnection driven by a laser interacting with a micro-scale plasma slab. Nature Communications, 2018, 9, 1601.	12.8	15
43	Laser-driven ultrafast antiproton beam. Physics of Plasmas, 2018, 25, 023111.	1.9	2
44	Ultra-bright, well-collimated, GeV gamma-ray production in the QED regime. Physics of Plasmas, 2018, 25, .	1.9	6
45	Ultrafast gamma-ray line emission driven by laser-accelerated ion beams. AIP Advances, 2018, 8, 115319.	1.3	1
46	Effects of radiation reaction on laser proton acceleration in the bubble regime. Physics of Plasmas, 2018, 25, .	1.9	2
47	Magnetic Field Generation in Plasma Waves Driven by Copropagating Intense Twisted Lasers. Physical Review Letters, 2018, 121, 145002.	7.8	63
48	Generation of collimated electron jets from plasma under applied electromagnetostatic field. Laser and Particle Beams, 2018, 36, 384-390.	1.0	1
49	Effects of micro-structures on laser-proton acceleration. Physics of Plasmas, 2018, 25, 103109.	1.9	14
50	Multi-stage proton acceleration controlled by double beam image technique. Physics of Plasmas, 2018, 25, 063116.	1.9	11
51	Autocorrelation pulse-duration measurement of relativistic femtosecond laser. Physics of Plasmas, 2018, 25, 073101.	1.9	1
52	Transparency of near-critical density plasmas under extreme laser intensities. New Journal of Physics, 2018, 20, 053043.	2.9	8
53	Collisionless Shock Acceleration of High-Flux Quasimonoenergetic Proton Beams Driven by Circularly Polarized Laser Pulses. Physical Review Letters, 2017, 119, 164801.	7.8	43
54	Crater-like structures induced by intense laser. Applied Physics Letters, 2017, 111, 184104.	3.3	2

#	Article	IF	CITATIONS
55	Ultrafast multi-MeV gamma-ray beam produced by laser-accelerated electrons. Physics of Plasmas, 2017, 24, 093104.	1.9	22
56	Generation of gamma-ray beam with orbital angular momentum in the QED regime. Physics of Plasmas, 2016, 23, .	1.9	28
57	Radiation from laser-microplasma-waveguide interactions in the ultra-intense regime. Physics of Plasmas, 2016, 23, .	1.9	5
58	Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas, 2016, 23, .	1.9	41
59	Deflection of a Reflected Intense Vortex Laser Beam. Physical Review Letters, 2016, 117, 113904.	7.8	23
60	Bright X-Ray Source from a Laser-Driven Microplasma Waveguide. Physical Review Letters, 2016, 116, 115001.	7.8	47
61	Direct acceleration of electrons by a CO2 laser in a curved plasma waveguide. Scientific Reports, 2016, 6, 28147.	3.3	8
62	Focal spot effects on the generation of proton beams during target normal sheath acceleration. Plasma Physics and Controlled Fusion, 2016, 58, 025010.	2.1	6
63	Particle-in-cell simulation of x-ray wakefield acceleration and betatron radiation in nanotubes. Physical Review Accelerators and Beams, 2016, 19, .	1.6	38
64	Generation of Intense High-Order Vortex Harmonics. Physical Review Letters, 2015, 114, 173901.	7.8	117
65	Hollow screw-like drill in plasma using an intense Laguerre–Gaussian laser. Scientific Reports, 2015, 5, 8274.	3.3	51
66	Quasi-monoenergetic ion generation by hole-boring radiation pressure acceleration in inhomogeneous plasmas using tailored laser pulses. Physics of Plasmas, 2014, 21, 012705.	1.9	22
67	Radiation-Reaction Trapping of Electrons in Extreme Laser Fields. Physical Review Letters, 2014, 112, 145003.	7.8	147
68	Energy partition, \hat{I}^3 -ray emission, and radiation reaction in the near-quantum electrodynamical regime of laser-plasma interaction. Physics of Plasmas, 2014, 21, 023109.	1.9	76
69	Layered structure in the interaction of thin foil with two laser pulses. Physics of Plasmas, 2014, 21, 024502.	1.9	0
70	Light Fan Driven by a Relativistic Laser Pulse. Physical Review Letters, 2014, 112, 235001.	7.8	95
71	Positron acceleration in a hollow plasma channel up to TeV regime. Scientific Reports, 2014, 4, 4171.	3.3	33
72	Effects of nanosecond-scale prepulse on generation of high-energy protons in target normal sheath acceleration. Applied Physics Letters, 2013, 102, .	3.3	19

#	Article	lF	CITATIONS
73	Proton acceleration by plasma wakefield driven by an intense proton beam. Laser and Particle Beams, 2013, 31, 427-438.	1.0	1
74	Scheme for proton-driven plasma-wakefield acceleration of positively charged particles in a hollow plasma channel. Physical Review Special Topics: Accelerators and Beams, $2013, 16, \ldots$	1.8	22
75	Nanocontrol of single dense energetic electron sheet in a chirped pulse with critical relativistic intensity. Physical Review Special Topics: Accelerators and Beams, 2013, 16, .	1.8	1
76	Inertial confinement fusion driven by long wavelength electromagnetic pulses. High Power Laser Science and Engineering, 2013, 1, 105-109.	4.6	4
77	Electron beam dynamics and self-cooling up to PeV level due to betatron radiation in plasma-based accelerators. Physical Review Special Topics: Accelerators and Beams, 2012, 15, .	1.8	10
78	Laser plasma accelerator driven by a super-Gaussian pulse. Journal of Plasma Physics, 2012, 78, 447-453.	2.1	14
79	Ultra-intense single attosecond pulse generated from circularly polarized laser interacting with overdense plasma. Physics of Plasmas, 2011, 18, 083104.	1.9	19
80	Instabilities in interaction of circularly polarized laser pulse and overdense target. Physics of Plasmas, 2011, 18, .	1.9	17
81	Operating plasma density issues on large-scale laser-plasma accelerators toward high-energy frontier. Physical Review Special Topics: Accelerators and Beams, 2011, 14, .	1.8	46
82	Efficient acceleration of monoenergetic proton beam by sharp front laser pulse. Physics of Plasmas, 2011, 18, 013103.	1.9	29
83	Generation of a large amount of energetic electrons in complex-structure bubble. New Journal of Physics, 2010, 12, 023037.	2.9	16
84	Overloading effect of energetic electrons in the bubble regime of laser wakefield acceleration. Physics of Plasmas, 2010, 17, 103108.	1.9	5
85	Effects of pulse duration and areal density on ultrathin foil acceleration. Physics of Plasmas, 2010, 17,	1.9	8
86	Ultrahigh energy proton generation in sequential radiation pressure and bubble regime. Physics of Plasmas, $2010,17,.$	1.9	25
87	Comment on "Generating High-Current Monoenergetic Proton Beams by a Circularly Polarized Laser Pulse in the Phase-Stable Acceleration Regime― Physical Review Letters, 2009, 102, 239501; author reply 239502.	7.8	12
88	lon acceleration with mixed solid targets interacting with circularly polarized lasers. Physical Review Special Topics: Accelerators and Beams, 2009, 12, .	1.8	21
89	High-energy monoenergetic proton bunch from laser interaction with a complex target. Physics of Plasmas, 2009, 16 , .	1.9	18
90	High-quality monoenergetic proton generation by sequential radiation pressure and bubble acceleration. Physical Review Special Topics: Accelerators and Beams, 2009, 12, .	1.8	32

#	Article	IF	Citations
91	Generation of plasma intrinsic oscillation at the front surface of a target irradiated by a circularly polarized laser pulse. Physics of Plasmas, 2009, 16 , .	1.9	14
92	The Diagnostics of Density Distribution for Dense Hot DT Plasmas Using Fast Protons. The Review of Laser Engineering, 2008, 36, 1150-1152.	0.0	0
93	Efficient GeV ion generation by ultraintense circularly polarized laser pulse. Physics of Plasmas, 2007, 14, .	1.9	118
94	Multistaged acceleration of ions by circularly polarized laser pulse: Monoenergetic ion beam generation. Physics of Plasmas, 2007, 14, .	1.9	95
95	Electron acceleration by a propagating laser pulse in vacuum. Physics of Plasmas, 2007, 14, 083102.	1.9	8
96	Transparency of an overdense plasma layer. Physical Review E, 2001, 64, 056406.	2.1	86
97	Condition of laser pulse width for relativistic self-focusing. Science Bulletin, 1997, 42, 555-557.	1.7	0
98	Spatiotemporal instabilities of terahertz OAM beams from air plasma via chirping a few-cycle vortex pump field. Journal of Optics (India), 0 , 1 .	1.7	2
99	Ultra-fast polarization of a thin electron layer in the rotational standing-wave field driven by double ultra-intense laser pulses. New Journal of Physics, 0, , .	2.9	0