
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7669438/publications.pdf Version: 2024-02-01

ΕΙΝΝΙ Δ΄ ΥΗΟΙ Τ

#	Article	IF	CITATIONS
1	Submarine landslides: processes, triggers and hazard prediction. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2006, 364, 2009-2039.	3.4	594
2	The Storegga Slide tsunami—comparing field observations with numerical simulations. Marine and Petroleum Geology, 2005, 22, 195-208.	3.3	239
3	Probabilistic Tsunami Hazard Analysis: Multiple Sources and Global Applications. Reviews of Geophysics, 2017, 55, 1158-1198.	23.0	170
4	Submarine landslide tsunamis: how extreme and how likely?. Natural Hazards, 2014, 72, 1341-1374.	3.4	164
5	Dispersion of tsunamis: does it really matter?. Natural Hazards and Earth System Sciences, 2013, 13, 1507-1526.	3.6	163
6	Oceanic propagation of a potential tsunami from the La Palma Island. Journal of Geophysical Research, 2008, 113, .	3.3	148
7	On the characteristics of landslide tsunamis. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140376.	3.4	128
8	Foundation damping and the dynamics of offshore wind turbine monopiles. Renewable Energy, 2015, 80, 724-736.	8.9	109
9	A parametric study of tsunamis generated by submarine slides in the Ormen Lange/Storegga area off western Norway. Marine and Petroleum Geology, 2005, 22, 219-231.	3.3	105
10	Fundamental mechanisms for tsunami generation by submarine mass flows in idealised geometries. Marine and Petroleum Geology, 2005, 22, 209-217.	3.3	88
11	The influence of land cover roughness on the results of high resolution tsunami inundation modeling. Natural Hazards and Earth System Sciences, 2011, 11, 2521-2540.	3.6	88
12	Tsunami hazard and exposure on the global scale. Earth-Science Reviews, 2012, 110, 58-73.	9.1	78
13	Rockslide tsunamis in complex fjords: From an unstable rock slope at Ã…kerneset to tsunami risk in western Norway. Coastal Engineering, 2014, 88, 101-122.	4.0	77
14	A global probabilistic tsunami hazard assessment from earthquake sources. Geological Society Special Publication, 2018, 456, 219-244.	1.3	72
15	Tsunami hazard in the Caribbean: Regional exposure derived from credible worst case scenarios. Continental Shelf Research, 2012, 38, 1-23.	1.8	69
16	Tsunami risk reduction – are we better prepared today than in 2004?. International Journal of Disaster Risk Reduction, 2014, 10, 127-142.	3.9	69
17	Some giant submarine landslides do not produce large tsunamis. Geophysical Research Letters, 2017, 44, 8463-8472.	4.0	68
18	Probabilistic Tsunami Hazard and Risk Analysis: A Review of Research Gaps. Frontiers in Earth Science, 2021. 9	1.8	65

#	Article	IF	CITATIONS
19	Historical tsunamis and present tsunami hazard in eastern Indonesia and the southern Philippines. Journal of Geophysical Research, 2012, 117, .	3.3	59
20	The 2014 <scp>L</scp> ake <scp>A</scp> skja rockslideâ€induced tsunami: Optimization of numerical tsunami model using observed data. Journal of Geophysical Research: Oceans, 2017, 122, 4110-4122.	2.6	59
21	Earthquake related tsunami hazard along the western coast of Thailand. Natural Hazards and Earth System Sciences, 2006, 6, 979-997.	3.6	58
22	Global tsunami hazard and exposure due to large co-seismic slip. International Journal of Disaster Risk Reduction, 2014, 10, 406-418.	3.9	51
23	Stochastic analysis of tsunami runup due to heterogeneous coseismic slip and dispersion. Journal of Geophysical Research, 2012, 117, .	3.3	50
24	The Making of the NEAM Tsunami Hazard Model 2018 (NEAMTHM18). Frontiers in Earth Science, 2021, 8, .	1.8	50
25	Modeling propagation and inundation of the 11 March 2011 Tohoku tsunami. Natural Hazards and Earth System Sciences, 2012, 12, 1017-1028.	3.6	49
26	Landslide Material Control on Tsunami Genesis—The Storegga Slide and Tsunami (8,100 Years BP). Journal of Geophysical Research: Oceans, 2019, 124, 3607-3627.	2.6	48
27	On the landslide tsunami uncertainty and hazard. Landslides, 2020, 17, 2301-2315.	5.4	46
28	Probabilistic tsunami forecasting for early warning. Nature Communications, 2021, 12, 5677.	12.8	37
29	Propagation of the Dec. 26, 2004, Indian Ocean Tsunami: Effects of Dispersion and Source Characteristics. International Journal of Fluid Mechanics Research, 2006, 33, 15-43.	0.4	36
30	Modelling 2018 Anak Krakatoa Flank Collapse and Tsunami: Effect of Landslide Failure Mechanism and Dynamics on Tsunami Generation. Pure and Applied Geophysics, 2020, 177, 2493-2516.	1.9	35
31	A New Approximate Method for Quantifying Tsunami Maximum Inundation Height Probability. Pure and Applied Geophysics, 2019, 176, 3227-3246.	1.9	34
32	Modelling the 1929 Grand Banks slump and landslide tsunami. Geological Society Special Publication, 2019, 477, 315-331.	1.3	33
33	Simulating run-up on steep slopes with operational Boussinesq models; capabilities, spurious effects and instabilities. Nonlinear Processes in Geophysics, 2013, 20, 379-395.	1.3	30
34	Effect of Shallow Slip Amplification Uncertainty on Probabilistic Tsunami Hazard Analysis in Subduction Zones: Use of Long-Term Balanced Stochastic Slip Models. Pure and Applied Geophysics, 2020, 177, 1497-1520.	1.9	29
35	Probabilistic Tsunami Hazard Analysis: High Performance Computing for Massive Scale Inundation Simulations. Frontiers in Earth Science, 2020, 8, .	1.8	28
36	Numerical simulation of impulse wave generation by idealized landslides with OpenFOAM. Coastal Engineering, 2021, 165, 103815.	4.0	24

#	Article	IF	CITATIONS
37	Tsunami Hazard and Risk Assessment on the Global Scale. , 2015, , 1-34.		23
38	Granular porous landslide tsunami modelling – the 2014 Lake Askja flank collapse. Nature Communications, 2022, 13, 678.	12.8	23
39	Instabilities of Boussinesq models in nonâ€uniform depth. International Journal for Numerical Methods in Fluids, 2009, 61, 606-637.	1.6	22
40	Air–ground interaction in long range propagation of low frequency sound and vibration—field tests and model verification. Applied Acoustics, 2005, 66, 553-578.	3.3	21
41	A Boussinesq type extension of the GeoClaw model - a study of wave breaking phenomena applying dispersive long wave models. Coastal Engineering, 2017, 122, 75-86.	4.0	21
42	Dynamics, Velocity and Run-Out of the Giant Storegga Slide. Advances in Natural and Technological Hazards Research, 2003, , 223-230.	1.1	20
43	The 29th January 2014 submarine landslide at Statland, Norway—landslide dynamics, tsunami generation, and run-up. Landslides, 2016, 13, 1435-1444.	5.4	20
44	Simulating low frequency sound transmission through walls and windows by a two-way coupled fluid structure interaction model. Journal of Sound and Vibration, 2017, 396, 203-216.	3.9	20
45	Simulating tsunami propagation in fjords with long-wave models. Natural Hazards and Earth System Sciences, 2015, 15, 657-669.	3.6	19
46	Tsunami risk communication and management: Contemporary gaps and challenges. International Journal of Disaster Risk Reduction, 2022, 70, 102771.	3.9	19
47	Validation and inter-comparison of models for landslide tsunami generation. Ocean Modelling, 2022, 170, 101943.	2.4	18
48	Enabling dynamic and intelligent workflows for HPC, data analytics, and AI convergence. Future Generation Computer Systems, 2022, 134, 414-429.	7.5	17
49	Urgent Tsunami Computing. , 2019, , .		16
50	Tsunami risk management for crustal earthquakes and non-seismic sources in Italy. Rivista Del Nuovo Cimento, 2021, 44, 69-144.	5.7	16
51	Testing Tsunami Inundation Maps for Evacuation Planning in Italy. Frontiers in Earth Science, 2021, 9, .	1.8	16
52	An early Holocene submarine slide in Boknafjorden and the effect of a slide-triggered tsunami on Stone Age settlements at RennesÃ,y, SW Norway. Marine Geology, 2007, 243, 157-168.	2.1	11
53	Impact of the 2004 Indian Ocean tsunami along the Tamil Nadu coastline: field survey review and numerical simulations. Natural Hazards, 2014, 72, 743-769.	3.4	11
54	Submarine Landslides and Their Consequences: What Do We Know, What Can We Do? 2013 5-17		11

#	Article	IF	CITATIONS
55	The Storegga Slide tsunami—comparing field observations with numerical simulations. , 2005, , 195-208.		11
56	Flow paths in wetting unsaturated flow: Experiments and simulations. Physical Review E, 2002, 65, 036312.	2.1	10
57	Data schemas for multiple hazards, exposure and vulnerability. Disaster Prevention and Management, 2019, 28, 752-763.	1.2	10
58	A parametric study of tsunamis generated by submarine slides in the Ormen Lange/Storegga area off western Norway. , 2005, , 219-231.		10
59	The Sensitivity of Tsunami Impact to Earthquake Source Parameters and Manning Friction in High-Resolution Inundation Simulations. Frontiers in Earth Science, 2022, 9, .	1.8	10
60	Risk Assessment and Design of Prevention Structures for Enhanced Tsunami Disaster Resilience (RAPSODI)/Euro-Japan Collaboration. Coastal Engineering Journal, 2016, 58, 1640012-1-1640012-37.	1.9	9
61	Effects of rotational submarine slump dynamics on tsunami genesis: new insight from idealized models and the 1929 Grand Banks event. Geological Society Special Publication, 2020, 500, 41-61.	1.3	9
62	Geohazard assessment related to submarine instabilities in BjÃ,rnafjorden, Norway. Geological Society Special Publication, 2019, 477, 549-566.	1.3	7
63	Tsunami-Genesis Due to Retrogressive Landslides on an Inclined Seabed. Advances in Natural and Technological Hazards Research, 2016, , 569-578.	1.1	7
64	Modeling Potential Tsunami Generation by the BlG'95 Landslide. Advances in Natural and Technological Hazards Research, 2014, , 507-515.	1.1	6
65	Dynamic Mudline Damping for Offshore Wind Turbine Monopiles. , 2014, , .		5
66	REDWIN – <u>RED</u> ucing cost in offshore <u>WIN</u> d by integrated structural and geotechnical design. Journal of Physics: Conference Series, 2018, 1104, 012029.	0.4	5
67	A Novel Quasi-3D Landslide Dynamics Model: From Theory to Applications and Risk Assessment. , 2019, , .		5
68	Fundamental mechanisms for tsunami generation by submarine mass flows in idealised geometries. , 2005, , 209-217.		5
69	Tsunami Hazard and Risk Assessment on the Global Scale. , 2022, , 213-246.		4
70	Intrinsic Soil Damping from Cyclic Laboratory Tests with Average Strain Development. Geotechnical Testing Journal, 2020, 43, 194-210.	1.0	4
71	Analysis of low frequency sound and sound induced vibration in a Norwegian wooden building. Noise Control Engineering Journal, 2011, 59, 383.	0.3	3
72	Coastal inundation multi-hazard analysis for a construction site in Malaysia. International Journal of Risk Assessment and Management, 2016, 19, 142.	0.1	3

#	Article	IF	CITATIONS
73	Editorial: From Tsunami Science to Hazard and Risk Assessment: Methods and Models. Frontiers in Earth Science, 2021, 9, .	1.8	3
74	On the Inference of Tsunami Uncertainties From Landslide Runâ€Out Observations. Journal of Geophysical Research: Oceans, 2022, 127, .	2.6	3
75	Effects of a multi-layered poro-elastic ground on attenuation of acoustic waves and ground vibration, 2011, 330, 1403-1418.	3.9	2
76	Countermeasures against noise and vibrations in lightweight wooden buildings caused by outdoor sources with strong low frequency components. Noise Control Engineering Journal, 2016, 64, 737-752.	0.3	2
77	Tsunami generation by potential, partially submerged rockslides in an abandoned open-pit mine: the case of Black Lake, Quebec, Canada. Canadian Geotechnical Journal, 2018, 55, 1769-1780.	2.8	1
78	Procedures for estimating hysteretic foundation damping. , 2015, , 1061-1066.		1
79	Special Session: Offshore Drilling and Development Geohazards: An International Perspective (I or II): Tsunamis Generated by Landslides and Earthquakes- Wave Characteristics and Numerical Modeling for Hazard Assessment in Offshore Geohazards. , 2007, , .		0
80	Submarine Landslides. , 2021, , .		0
81	Building vibration induced by sonic boom - field test in Russia. Applied Acoustics, 2022, 185, 108422.	3.3	0
82	Hazard and risk assessment of rock slide tsunamis in lakes and reservoirs. , 2011, , 717-724.		0
83	Slope Stability Assessment for Deep Fjord Crossings Using VHR Geophysical Data – An Example from Biễ mafiorden, Norway 2018		0