Hamid M Said

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7668064/publications.pdf

Version: 2024-02-01

94 papers 2,888 citations

28 h-index 189892 50 g-index

94 all docs 94 docs citations

times ranked

94

2734 citing authors

#	Article	IF	CITATIONS
1	Intestinal absorption of water-soluble vitamins in health and disease. Biochemical Journal, 2011, 437, 357-372.	3.7	312
2	Recent Advances in Carrier-Mediated Intestinal Absorption of Water-Soluble Vitamins. Annual Review of Physiology, 2004, 66, 419-446.	13.1	147
3	Intestinal absorption of water-soluble vitamins: an update. Current Opinion in Gastroenterology, 2006, 22, 140-146.	2.3	133
4	Adaptive regulation of intestinal folate uptake: effect of dietary folate deficiency. American Journal of Physiology - Cell Physiology, 2000, 279, C1889-C1895.	4.6	122
5	Expression and functional contribution of hTHTR-2 in thiamin absorption in human intestine. American Journal of Physiology - Renal Physiology, 2004, 286, G491-G498.	3.4	104
6	Cell and Molecular Aspects of Human Intestinal Biotin Absorption. Journal of Nutrition, 2009, 139, 158-162.	2.9	86
7	Biotin deficiency enhances the inflammatory response of human dendritic cells. American Journal of Physiology - Cell Physiology, 2016, 311, C386-C391.	4.6	86
8	Biotin: Biochemical, Physiological and Clinical Aspects. Sub-Cellular Biochemistry, 2012, 56, 1-19.	2.4	84
9	Riboflavin uptake by human-derived colonic epithelial NCM460 cells. American Journal of Physiology - Cell Physiology, 2000, 278, C270-C276.	4.6	78
10	Chronic alcohol consumption and intestinal thiamin absorption: effects on physiological and molecular parameters of the uptake process. American Journal of Physiology - Renal Physiology, 2010, 299, G23-G31.	3.4	78
11	A carrier-mediated mechanism for pyridoxine uptake by human intestinal epithelial Caco-2 cells: regulation by a PKA-mediated pathway. American Journal of Physiology - Cell Physiology, 2003, 285, C1219-C1225.	4.6	77
12	Recent advances in transport of water-soluble vitamins in organs of the digestive system: a focus on the colon and the pancreas. American Journal of Physiology - Renal Physiology, 2013, 305, G601-G610.	3.4	69
13	Expression and promoter analysis of SLC19A2 in the human intestine. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1561, 180-187.	2.6	64
14	Mechanism of thiamine uptake by human colonocytes: studies with cultured colonic epithelial cell line NCM460. American Journal of Physiology - Renal Physiology, 2001, 281, G144-G150.	3.4	61
15	Molecular Identification and Functional Characterization of the Human Colonic Thiamine Pyrophosphate Transporter. Journal of Biological Chemistry, 2014, 289, 4405-4416.	3.4	60
16	Impaired Intestinal Vitamin B1 (Thiamin) Uptake in Thiamin Transporter-2–Deficient Mice. Gastroenterology, 2010, 138, 1802-1809.	1.3	58
17	Effect of chronic kidney disease on the expression of thiamin and folic acid transporters. Nephrology Dialysis Transplantation, 2011, 26, 2137-2144.	0.7	55
18	Differential expression of human riboflavin transporters -1, -2, and -3 in polarized epithelia: A key role for hRFT-2 in intestinal riboflavin uptake. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 3016-3021.	2.6	50

#	Article	lF	CITATIONS
19	Folate uptake in the human intestine: Promoter activity and effect of folate deficiency. Journal of Cellular Physiology, 2003, 196, 403-408.	4.1	48
20	Tumor necrosis factor alpha reduces intestinal vitamin C uptake: a role for NF-κB-mediated signaling. American Journal of Physiology - Renal Physiology, 2018, 315, G241-G248.	3.4	46
21	Inhibition of intestinal ascorbic acid uptake by lipopolysaccharide is mediated via transcriptional mechanisms. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 556-565.	2.6	44
22	Riboflavin uptake by the human-derived liver cells Hep G2: Mechanism and regulation. Journal of Cellular Physiology, 1998, 176, 588-594.	4.1	39
23	Pancreatic beta cells and islets take up thiamin by a regulated carrier-mediated process: studies using mice and human pancreatic preparations. American Journal of Physiology - Renal Physiology, 2009, 297, G197-G206.	3.4	38
24	Mutations in SLC5A6 associated with brain, immune, bone, and intestinal dysfunction in a young child. Human Genetics, 2017, 136, 253-261.	3.8	36
25	Mechanism of nicotinic acid transport in human liver cells: experiments with HepG2 cells and primary hepatocytes. American Journal of Physiology - Cell Physiology, 2007, 293, C1773-C1778.	4.6	35
26	Uptake of biotin by human hepatoma cell line, Hep G2: A carrier-mediated process similar to that of normal liver. Journal of Cellular Physiology, 1994, 161, 483-489.	4.1	33
27	Developmental maturation of intestinal and renal thiamin uptake: Studies in wild-type and transgenic mice carrying human THTR-1 and 2 promoters. Journal of Cellular Physiology, 2006, 206, 371-377.	4.1	30
28	Biotin Supplementation Ameliorates Murine Colitis by Preventing NF-κB Activation. Cellular and Molecular Gastroenterology and Hepatology, 2020, 9, 557-567.	4.5	30
29	A high-affinity and specific carrier-mediated mechanism for uptake of thiamine pyrophosphate by human colonic epithelial cells. American Journal of Physiology - Renal Physiology, 2012, 303, G389-G395.	3.4	29
30	Molecular Mechanisms Mediating the Adaptive Regulation of Intestinal Riboflavin Uptake Process. PLoS ONE, 2015, 10, e0131698.	2.5	28
31	Gastrointestinal Handling of Waterâ€Soluble Vitamins. , 2018, 8, 1291-1311.		26
32	Mechanism of riboflavin uptake by cultured human retinal pigment epithelial ARPE-19 cells: possible regulation by an intracellular Ca2+-calmodulin-mediated pathway. Journal of Physiology, 2005, 566, 369-377.	2.9	25
33	Role of the sodium-dependent multivitamin transporter (SMVT) in the maintenance of intestinal mucosal integrity. American Journal of Physiology - Renal Physiology, 2016, 311, G561-G570.	3.4	24
34	Effect of clinical mutations on functionality of the human riboflavin transporter-2 (hRFT-2). Molecular Genetics and Metabolism, 2012, 105, 652-657.	1.1	23
35	Mechanism and regulation of folate uptake by pancreatic acinar cells: effect of chronic alcohol consumption. American Journal of Physiology - Renal Physiology, 2010, 298, G985-G993.	3.4	22
36	Mitochondrial Uptake of Thiamin Pyrophosphate: Physiological and Cell Biological Aspects. PLoS ONE, 2013, 8, e73503.	2.5	22

3

#	Article	IF	CITATIONS
37	Biotin and pantothenic acid oversupplementation to conditional <i>SLC5A6</i> KO mice prevents the development of intestinal mucosal abnormalities and growth defects. American Journal of Physiology - Cell Physiology, 2018, 315, C73-C79.	4.6	22
38	Role of the putative N-glycosylation and PKC-phosphorylation sites of the human sodium-dependent multivitamin transporter (hSMVT) in function and regulation. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2073-2080.	2.6	21
39	Molecular mechanism(s) involved in differential expression of vitamin C transporters along the intestinal tract. American Journal of Physiology - Renal Physiology, 2017, 312, G340-G347.	3.4	20
40	Conditional (intestinal-specific) knockout of the riboflavin transporter-3 (RFVT-3) impairs riboflavin absorption. American Journal of Physiology - Renal Physiology, 2016, 310, G285-G293.	3.4	19
41	SLC52A2 [p.P141T] and SLC52A3 [p.N21S] causing Brown-Vialetto-Van Laere Syndrome in an Indian patient: First genetically proven case with mutations in two riboflavin transporters. Clinica Chimica Acta, 2016, 462, 210-214.	1.1	18
42	Tamoxifen-induced, intestinal-specific deletion of <i>Slc5a6</i> in adult mice leads to spontaneous inflammation: involvement of NF-κB, NLRP3, and gut microbiota. American Journal of Physiology - Renal Physiology, 2019, 317, G518-G530.	3.4	18
43	Functional analysis of the third identified SLC25A19 mutation causative for the thiamine metabolism dysfunction syndrome 4. Journal of Human Genetics, 2019, 64, 1075-1081.	2.3	18
44	Effect of the Cigarette Smoke Component, 4-(Methylnitrosamino)-1-(3-Pyridyl)-1-Butanone (NNK), on Physiological and Molecular Parameters of Thiamin Uptake by Pancreatic Acinar Cells. PLoS ONE, 2013, 8, e78853.	2.5	18
45	Mechanism and regulation of vitamin B ₆ uptake by renal tubular epithelia: studies with cultured OK cells. American Journal of Physiology - Renal Physiology, 2002, 282, F465-F471.	2.7	17
46	Regulation of basal promoter activity of the human thiamine pyrophosphate transporter <i>SLC44A4</i> in human intestinal epithelial cells. American Journal of Physiology - Cell Physiology, 2015, 308, C750-C757.	4.6	17
47	Cellular and molecular aspects of thiamin uptake by human liver cells: studies with cultured HepG2 cells. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1567, 106-112.	2.6	16
48	Adaptive regulation of human intestinal thiamine uptake by extracellular substrate level: a role for THTR-2 transcriptional regulation. American Journal of Physiology - Renal Physiology, 2013, 305, G593-G599.	3.4	15
49	Chronic alcohol exposure affects pancreatic acinar mitochondrial thiamin pyrophosphate uptake: studies with mouse 266-6 cell line and primary cells. American Journal of Physiology - Renal Physiology, 2015, 309, G750-G758.	3.4	15
50	Mechanism(S) Involved in the Colon-Specific Expression of the Thiamine Pyrophosphate (Tpp) Transporter. PLoS ONE, 2016, 11, e0149255.	2.5	15
51	Identification and characterization of the minimal 5′-regulatory region of the human riboflavin transporter-3 (SLC52A3) in intestinal epithelial cells. American Journal of Physiology - Cell Physiology, 2015, 308, C189-C196.	4.6	14
52	Uptake of ascorbic acid by pancreatic acinar cells is negatively impacted by chronic alcohol exposure. American Journal of Physiology - Cell Physiology, 2016, 311, C129-C135.	4.6	14
53	Role of MicroRNA-423-5p in posttranscriptional regulation of the intestinal riboflavin transporter-3. American Journal of Physiology - Renal Physiology, 2017, 313, G589-G598.	3.4	14
54	pH-dependent pyridoxine transport by SLC19A2 and SLC19A3: Implications for absorption in acidic microclimates. Journal of Biological Chemistry, 2020, 295, 16998-17008.	3.4	14

#	Article	IF	Citations
55	Sodium Butyrate Enhances Intestinal Riboflavin Uptake via Induction of Expression of Riboflavin Transporter-3 (RFVT3). Digestive Diseases and Sciences, 2019, 64, 84-92.	2.3	13
56	The human colonic thiamine pyrophosphate transporter (hTPPT) is a glycoprotein and N-linked glycosylation is important for its function. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 866-871.	2.6	12
57	Effect of the proinflammatory cytokine TNF-α on intestinal riboflavin uptake: inhibition mediated via transcriptional mechanism(s). American Journal of Physiology - Cell Physiology, 2018, 315, C653-C663.	4.6	12
58	<i>Salmonella</i> infection inhibits intestinal biotin transport: cellular and molecular mechanisms. American Journal of Physiology - Renal Physiology, 2015, 309, G123-G131.	3.4	11
59	Structure/functional aspects of the human riboflavin transporter-3 (<i>SLC52A3</i>): role of the predicted glycosylation and substrate-interacting sites. American Journal of Physiology - Cell Physiology, 2017, 313, C228-C238.	4.6	11
60	Thiamine mimetics sulbutiamine and benfotiamine as a nutraceutical approach to anticancer therapy. Biomedicine and Pharmacotherapy, 2020, 121, 109648.	5.6	11
61	EnteropathogenicÂEscherichia coliÂInfection Inhibits Intestinal Ascorbic Acid Uptake via Dysregulation of Its Transporter Expression. Digestive Diseases and Sciences, 2021, 66, 2250-2260.	2.3	11
62	Chronic Nicotine Exposure In Vivo and In Vitro Inhibits Vitamin B1 (Thiamin) Uptake by Pancreatic Acinar Cells. PLoS ONE, 2015, 10, e0143575.	2.5	11
63	Chronic alcohol exposure inhibits biotin uptake by pancreatic acinar cells: possible involvement of epigenetic mechanisms. American Journal of Physiology - Renal Physiology, 2014, 307, G941-G949.	3.4	10
64	Functional thiamine deficiency in end-stage renal disease: malnutrition despite ample nutrients. Kidney International, 2016, 90, 252-254.	5.2	10
65	Lipopolysaccharide inhibits colonic biotin uptake via interference with membrane expression of its transporter: a role for a casein kinase 2-mediated pathway. American Journal of Physiology - Cell Physiology, 2017, 312, C376-C384.	4.6	10
66	Inhibitory effect of bile salts on the enterohepatic circulation of methotrexate in the unanesthetized rat: Inhibition of methotrexate intestinal absorption. Cancer Chemotherapy and Pharmacology, 1986, 16, 121-4.	2.3	9
67	Cys294 is essential for the function of the human sodium-dependent multivitamin transporter. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 97-102.	2.6	9
68	Identification of residues/sequences in the human riboflavin transporter-2 that is important for function and cell biology. Nutrition and Metabolism, 2015, 12, 13.	3.0	9
69	Inhibition of pancreatic acinar mitochondrial thiamin pyrophosphate uptake by the cigarette smoke component 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. American Journal of Physiology - Renal Physiology, 2016, 310, G874-G883.	3.4	9
70	Novel nonsense mutation (p.lle411Metfs*12) in the SLC19A2 gene causing Thiamine Responsive Megaloblastic Anemia in an Indian patient. Clinica Chimica Acta, 2016, 452, 44-49.	1.1	9
71	Association of TM4SF4 with the Human Thiamine Transporter-2 in Intestinal Epithelial Cells. Digestive Diseases and Sciences, 2014, 59, 583-590.	2.3	8
72	Identification and characterization of $5\hat{a}\in^2$ -flanking region of the human riboflavin transporter 1 gene (SLC52A1). Gene, 2014, 553, 49-56.	2.2	8

#	Article	IF	Citations
73	Adaptive regulation of pancreatic acinar mitochondrial thiamin pyrophosphate uptake process: possible involvement of epigenetic mechanism(s). American Journal of Physiology - Renal Physiology, 2017, 313, G448-G455.	3.4	8
74	Identification of transmembrane protein 237 as a novel interactor with the intestinal riboflavin transporter-3 (RFVT-3): role in functionality and cell biology. American Journal of Physiology - Cell Physiology, 2019, 316, C805-C814.	4.6	8
75	MicroRNA-103a regulates sodium-dependent vitamin C transporter-1 expression in intestinal epithelial cells. Journal of Nutritional Biochemistry, 2019, 65, 46-53.	4.2	8
76	Enterotoxigenic <i>Escherichia coli</i> heat labile enterotoxin inhibits intestinal ascorbic acid uptake via a cAMP-dependent NF-κB-mediated pathway. American Journal of Physiology - Renal Physiology, 2019, 316, G55-G63.	3.4	8
77	Effect of chronic alcohol exposure on gut vitamin B7 uptake: involvement of epigenetic mechanisms and effect of alcohol metabolites. American Journal of Physiology - Renal Physiology, 2021, 321, G123-G133.	3.4	8
78	Molecular mechanisms involved in the adaptive regulation of the colonic thiamin pyrophosphate uptake process. American Journal of Physiology - Cell Physiology, 2017, 313, C655-C663.	4.6	7
79	Pyridoxine and pancreatic acinar cells: transport physiology and effect on gene expression profile. American Journal of Physiology - Cell Physiology, 2019, 317, C1107-C1114.	4.6	7
80	Proinflammatory cytokines inhibit thiamin uptake by human and mouse pancreatic acinar cells: involvement of transcriptional mechanism(s). American Journal of Physiology - Renal Physiology, 2021, 320, G108-G116.	3.4	7
81	Biotin uptake by mouse and human pancreatic beta cells/islets: a regulated, lipopolysaccharide-sensitive carrier-mediated process. American Journal of Physiology - Renal Physiology, 2014, 307, G365-G373.	3.4	6
82	Enterohemorrhagic Escherichia coli infection inhibits colonic thiamin pyrophosphate uptake via transcriptional mechanism. PLoS ONE, 2019, 14, e0224234.	2.5	6
83	Structure-function characterization of the human mitochondrial thiamin pyrophosphate transporter (hMTPPT; SLC25A19): Important roles for Ile 33, Ser 34, Asp 37, His 137 and Lys 291. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1883-1890.	2.6	5
84	Hypoxia inhibits colonic uptake of the microbiota-generated forms of vitamin B1 via HIF-1 $\hat{1}$ ±-mediated transcriptional regulation of their transporters. Journal of Biological Chemistry, 2022, , 101562.	3.4	5
85	Intestinal Absorption of Water-Soluble Vitamins. , 2006, , 1791-1825.		4
86	Posttranscriptional regulation of thiamin transporter-1 expression by microRNA-200a-3p in pancreatic acinar cells. American Journal of Physiology - Renal Physiology, 2020, 319, G323-G332.	3.4	4
87	Developmental maturation of the colonic uptake process of the microbiota-generated thiamin pyrophosphate. American Journal of Physiology - Renal Physiology, 2021, 320, G829-G835.	3.4	4
88	Effect of bacterial flagellin on thiamin uptake by human and mouse pancreatic acinar cells: inhibition mediated at the level of transcription of thiamin transporters 1 and 2. American Journal of Physiology - Renal Physiology, 2019, 316, G735-G743.	3.4	3
89	Mechanism and regulation of thiamin uptake in humanâ€derived renal epithelial cells. FASEB Journal, 2006, 20, A841.	0.5	0
90	A new insight into redox mechanisms of cysteamineâ€induced duodenal ulcers. FASEB Journal, 2006, 20, A1084.	0.5	0

#	Article	IF	CITATIONS
91	Mechanisms of Human Hepatic Vitamin C Uptake: Studies of the hSCVT Systems. FASEB Journal, 2008, 22, 936.14.	0.5	0
92	Cell biology of the human protonâ€coupled folate transporter (hPCFT) in renal epithelial MDCK cells. FASEB Journal, 2008, 22, 1156.2.	0.5	0
93	Biotin deficiency induces Th1 and Th17 mediated inflammatory response in CD4+T lymphocytes via activation of mTOR signaling pathway. FASEB Journal, 2018, 32, 280.6.	0.5	O
94	Inhibition of the human colonic thiamine pyrophosphate (TPP) uptake process by the proâ€inflammatory cytokine, TNFâ€î± and IFNâ€î³. FASEB Journal, 2018, 32, lb360.	0.5	0