
Longbiao Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7667658/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Rare Allele of GS2 Enhances Grain Size and Grain Yield in Rice. Molecular Plant, 2015, 8, 1455-1465.	8.3	382
2	Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. Nature Genetics, 2014, 46, 652-656.	21.4	338
3	Rational design of high-yield and superior-quality rice. Nature Plants, 2017, 3, 17031.	9.3	293
4	The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency. Nature Communications, 2019, 10, 5207.	12.8	151
5	Echinochloa crus-galli genome analysis provides insight into its adaptation and invasiveness as a weed. Nature Communications, 2017, 8, 1031.	12.8	138
6	Twenty years of plant genome sequencing: achievements and challenges. Trends in Plant Science, 2022, 27, 391-401.	8.8	125
7	Full-length sequence assembly reveals circular RNAs with diverse non-GT/AG splicing signals in rice. RNA Biology, 2017, 14, 1055-1063.	3.1	113
8	A super pan-genomic landscape of rice. Cell Research, 2022, 32, 878-896.	12.0	99
9	A Rice <i>PECTATE LYASE-LIKE</i> Gene Is Required for Plant Growth and Leaf Senescence. Plant Physiology, 2017, 174, 1151-1166.	4.8	96
10	A Strigolactone Biosynthesis Gene Contributed to the Green Revolution in Rice. Molecular Plant, 2020, 13, 923-932.	8.3	91
11	Natural variation in the promoter of <i>TGW2</i> determines grain width and weight in rice. New Phytologist, 2020, 227, 629-640.	7.3	89
12	The newly identified heat-stress sensitive albino 1 gene affects chloroplast development in rice. Plant Science, 2018, 267, 168-179.	3.6	70
13	Sensing of Abiotic Stress and Ionic Stress Responses in Plants. International Journal of Molecular Sciences, 2018, 19, 3298.	4.1	67
14	Disruption of <i>EARLY LESION LEAF 1</i> , encoding a cytochrome P450 monooxygenase, induces ROS accumulation and cell death in rice. Plant Journal, 2021, 105, 942-956.	5.7	56
15	Diverse genetic mechanisms underlie worldwide convergent rice feralization. Genome Biology, 2020, 21, 70.	8.8	55
16	PlantscRNAdb: A database for plant single-cell RNA analysis. Molecular Plant, 2021, 14, 855-857.	8.3	48
17	The Genomes of the Allohexaploid Echinochloa crus-galli and Its Progenitors Provide Insights into Polyploidization-Driven Adaptation. Molecular Plant, 2020, 13, 1298-1310.	8.3	47
18	Os <scp>ACL</scp> â€A2 negatively regulates cell death and disease resistance in rice. Plant Biotechnology Journal, 2019, 17, 1344-1356.	8.3	46

#	Article	IF	CITATIONS
19	FZP determines grain size and sterile lemma fate in rice. Journal of Experimental Botany, 2018, 69, 4853-4866.	4.8	45
20	Using CRISPR-Cas9 to generate semi-dwarf rice lines in elite landraces. Scientific Reports, 2019, 9, 19096.	3.3	45
21	Genomic Clues for Crop–Weed Interactions and Evolution. Trends in Plant Science, 2018, 23, 1102-1115.	8.8	44
22	DNA damage and reactive oxygen species cause cell death in the rice <i>local lesions 1</i> mutant under high light and high temperature. New Phytologist, 2019, 222, 349-365.	7.3	44
23	Genetic analysis for rice seedling vigor and fine mapping of a major QTL <i>qSSL1b</i> for seedling shoot length. Breeding Science, 2017, 67, 307-315.	1.9	40
24	<i>PHOTOâ€SENSITIVE LEAF ROLLING 1</i> encodes a polygalacturonase that modifies cell wall structure and drought tolerance in rice. New Phytologist, 2021, 229, 890-901.	7.3	40
25	Fine Mapping Identifies a New QTL for Brown Rice Rate in Rice (Oryza Sativa L.). Rice, 2016, 9, 4.	4.0	38
26	QTL analysis for rice salinity tolerance and fine mapping of a candidate locus qSL7 for shoot length under salt stress. Plant Growth Regulation, 2020, 90, 307-319.	3.4	38
27	Advances in Sensing, Response and Regulation Mechanism of Salt Tolerance in Rice. International Journal of Molecular Sciences, 2021, 22, 2254.	4.1	37
28	<i><scp>AH</scp>2</i> encodes a <scp>MYB</scp> domain protein that determines hull fate and affects grain yield and quality in rice. Plant Journal, 2019, 100, 813-824.	5.7	36
29	The rice white green leaf 2 gene causes defects in chloroplast development and affects the plastid ribosomal protein S9. Rice, 2018, 11, 39.	4.0	35
30	†Twoâ€floret spikelet' as a novel resource has the potential to increase rice yield. Plant Biotechnology Journal, 2018, 16, 351-353.	8.3	34
31	Production of novel beneficial alleles of a rice yieldâ€ŧelated QTL by CRISPR/Cas9. Plant Biotechnology Journal, 2020, 18, 1987-1989.	8.3	33
32	Transcriptome Analysis of Rice Seedling Roots in Response to Potassium Deficiency. Scientific Reports, 2017, 7, 5523.	3.3	32
33	Using <i>Heading date 1</i> preponderant alleles from <i>indica</i> cultivars to breed highâ€yield, highâ€quality <i>japonica</i> rice varieties for cultivation in south China. Plant Biotechnology Journal, 2020, 18, 119-128.	8.3	30
34	OsHAK1 controls the vegetative growth and panicle fertility of rice by its effect on potassium-mediated sugar metabolism. Plant Science, 2018, 274, 261-270.	3.6	29
35	FON 4 prevents the multiâ€floret spikelet in rice. Plant Biotechnology Journal, 2019, 17, 1007-1009.	8.3	29
36	ABNORMAL FLOWER AND GRAIN 1 encodes OsMADS6 and determines palea identity and affects rice grain yield and quality. Science China Life Sciences, 2020, 63, 228-238.	4.9	28

#	Article	IF	CITATIONS
37	The Tolerance of Salinity in Rice Requires the Presence of a Functional Copy of FLN2. Biomolecules, 2020, 10, 17.	4.0	28
38	Whole genome sequence of Pantoea ananatis R100, an antagonistic bacterium isolated from rice seed. Journal of Biotechnology, 2016, 225, 1-2.	3.8	27
39	Development of Three Sets of High-Throughput Genotyped Rice Chromosome Segment Substitution Lines and QTL Mapping for Eleven Traits. Rice, 2019, 12, 33.	4.0	26
40	Primary leafâ€ŧype ferredoxinÂ1 participates in photosynthetic electron transport and carbon assimilation in rice. Plant Journal, 2020, 104, 44-58.	5.7	26
41	Genomic insights into the evolution of Echinochloa species as weed and orphan crop. Nature Communications, 2022, 13, 689.	12.8	26
42	Development of nutritious rice with high zinc/selenium and low cadmium in grains through QTL pyramiding. Journal of Integrative Plant Biology, 2020, 62, 349-359.	8.5	25
43	Xiaowei, a New Rice Germplasm for Large-Scale Indoor Research. Molecular Plant, 2018, 11, 1418-1420.	8.3	24
44	<i>PALE-GREEN LEAF12</i> Encodes a Novel Pentatricopeptide Repeat Protein Required for Chloroplast Development and 16S rRNA Processing in Rice. Plant and Cell Physiology, 2019, 60, 587-598.	3.1	24
45	Genetic Analysis for Cooking and Eating Quality of Super Rice and Fine Mapping of a Novel Locus qGC10 for Gel Consistency. Frontiers in Plant Science, 2020, 11, 342.	3.6	22
46	OsSLC1 Encodes a Pentatricopeptide Repeat Protein Essential for Early Chloroplast Development and Seedling Survival. Rice, 2020, 13, 25.	4.0	22
47	Genome sequence of Xanthomonas sacchari R1, a biocontrol bacterium isolated from the rice seed. Journal of Biotechnology, 2015, 206, 77-78.	3.8	19
48	A Nckâ€associated protein 1â€like protein affects drought sensitivity by its involvement in leaf epidermal development and stomatal closure in rice. Plant Journal, 2019, 98, 884-897.	5.7	19
49	Genome-Wide Association Study of Grain Size Traits in Indica Rice Multiparent Advanced Generation Intercross (MAGIC) Population. Frontiers in Plant Science, 2020, 11, 395.	3.6	19
50	UDPâ€ <i>N</i> â€acetylglucosamine pyrophosphorylase enhances rice survival at high temperature. New Phytologist, 2022, 233, 344-359.	7.3	19
51	Genome-wide association study and transcriptome analysis reveal new QTL and candidate genes for nitrogenâ€deficiency tolerance in rice. Crop Journal, 2022, 10, 942-951.	5.2	19
52	Integrated Multi-Omics Perspective to Strengthen the Understanding of Salt Tolerance in Rice. International Journal of Molecular Sciences, 2022, 23, 5236.	4.1	19
53	Characterization and fine mapping of a new early leaf senescence mutant es3(t) in rice. Plant Growth Regulation, 2017, 81, 419-431.	3.4	18
54	Enhanced Expression of QTL qLL9/DEP1 Facilitates the Improvement of Leaf Morphology and Grain Yield in Rice. International Journal of Molecular Sciences, 2019, 20, 866.	4.1	18

#	Article	IF	CITATIONS
55	Identification of quantitative trait loci associated with tolerance to low potassium and related ions concentrations at seedling stage in rice (Oryza sativa L.). Plant Growth Regulation, 2015, 77, 157-166.	3.4	17
56	Leaf width gene LW5/D1 affects plant architecture and yield in rice by regulating nitrogen utilization efficiency. Plant Physiology and Biochemistry, 2020, 157, 359-369.	5.8	17
57	MORE FLORET1 Encodes a MYB Transcription Factor That Regulates Spikelet Development in Rice. Plant Physiology, 2020, 184, 251-265.	4.8	16
58	Construction of a High-Density Genetic Map Based on SLAF Markers and QTL Analysis of Leaf Size in Rice. Frontiers in Plant Science, 2020, 11, 1143.	3.6	16
59	The C2H2 zinc-finger protein LACKING RUDIMENTARY GLUME 1 regulates spikelet development in rice. Science Bulletin, 2020, 65, 753-764.	9.0	16
60	OsMORF9 is necessary for chloroplast development and seedling survival in rice. Plant Science, 2021, 307, 110907.	3.6	16
61	The rice YGL gene encoding an Mg2+-chelatase ChlD subunit is affected by temperature for chlorophyll biosynthesis. Journal of Plant Biology, 2017, 60, 314-321.	2.1	15
62	New QTLs identified for leaf correlative traits in rice seedlings under cadmium stress. Plant Growth Regulation, 2018, 85, 329-335.	3.4	15
63	Natural variation among Arabidopsis thaliana accessions in tolerance to high magnesium supply. Scientific Reports, 2018, 8, 13640.	3.3	15
64	QTLs and candidate genes for chlorate resistance in rice (Oryzasativa L.). Euphytica, 2006, 152, 141-148.	1.2	14
65	Fine mapping of LOW TILLER 1, a gene controlling tillering and panicle branching in rice. Plant Growth Regulation, 2017, 83, 93-104.	3.4	14
66	Functional characterization of OsHAK1 promoter in response to osmotic/drought stress by deletion analysis in transgenic rice. Plant Growth Regulation, 2019, 88, 241-251.	3.4	14
67	QTL identification for salt tolerance related traits at the seedling stage in indica rice using a multi-parent advanced generation intercross (MAGIC) population. Plant Growth Regulation, 2020, 92, 365-373.	3.4	14
68	Recent origination of circular RNAs in plants. New Phytologist, 2022, 233, 515-525.	7.3	14
69	Single-point Mutation of an Histidine-aspartic Domain-containing Gene involving in Chloroplast Ribosome Biogenesis Leads to White Fine Stripe Leaf in Rice. Scientific Reports, 2017, 7, 3298.	3.3	13
70	OsCAF1, a CRM Domain Containing Protein, Influences Chloroplast Development. International Journal of Molecular Sciences, 2019, 20, 4386.	4.1	13
71	Combining GWAS, Genome-Wide Domestication and a Transcriptomic Analysis Reveals the Loci and Natural Alleles of Salt Tolerance in Rice (Oryza sativa L.). Frontiers in Plant Science, 0, 13, .	3.6	13
72	Knocking Out the Gene RLS1 Induces Hypersensitivity to Oxidative Stress and Premature Leaf Senescence in Rice. International Journal of Molecular Sciences, 2018, 19, 2853.	4.1	12

#	Article	IF	CITATIONS
73	Complete Genome Sequence of Pseudomonas Parafulva PRS09-11288, a Biocontrol Strain Produces the Antibiotic Phenazine-1-carboxylic Acid. Current Microbiology, 2019, 76, 1087-1091.	2.2	11
74	Transcriptomic Analysis of Short-Term Salt-Stress Response in Mega Hybrid Rice Seedlings. Agronomy, 2021, 11, 1328.	3.0	11
75	Isolation of TSCD11 Gene for Early Chloroplast Development under High Temperature in Rice. Rice, 2020, 13, 49.	4.0	11
76	Characterization, Expression, and Interaction Analyses of OsMORF Gene Family in Rice. Genes, 2019, 10, 694.	2.4	10
77	The rice LRR-like1 protein YELLOW AND PREMATURE DWARF 1 is involved in leaf senescence induced by high light. Journal of Experimental Botany, 2021, 72, 1589-1605.	4.8	10
78	The <i>SEEDLING BIOMASS 1</i> allele from <i>indica</i> rice enhances yield performance under lowâ€nitrogen environments. Plant Biotechnology Journal, 2021, 19, 1681-1683.	8.3	10
79	OsCAF2 contains two CRM domains and is necessary for chloroplast development in rice. BMC Plant Biology, 2020, 20, 381.	3.6	9
80	The heterochronic gene <i>Oryza sativa LIKE HETEROCHROMATIN PROTEIN 1</i> modulates miR156b/c/i/e levels. Journal of Integrative Plant Biology, 2020, 62, 1839-1852.	8.5	9
81	Characterization of the CRM Gene Family and Elucidating the Function of OsCFM2 in Rice. Biomolecules, 2020, 10, 327.	4.0	9
82	Narrow albino leaf 1 is allelic to CHR729, regulates leaf morphogenesis and development by affecting auxin metabolism in rice. Plant Growth Regulation, 2017, 82, 175-186.	3.4	8
83	Fine Mapping of a Novel defective glume 1 (dg1) Mutant, Which Affects Vegetative and Spikelet Development in Rice. Frontiers in Plant Science, 2017, 8, 486.	3.6	8
84	<i>WHITE AND LESIONâ€MIMIC LEAF1</i> , encoding a lumazine synthase, affects reactive oxygen species balance and chloroplast development in rice. Plant Journal, 2021, 108, 1690-1703.	5.7	8
85	Lateral transfers lead to the birth of momilactone biosynthetic gene clusters in grass. Plant Journal, 2022, 111, 1354-1367.	5.7	8
86	Full genome sequence of Brevibacillus laterosporus strain B9, a biological control strain isolated from Zhejiang, China. Journal of Biotechnology, 2015, 207, 77-78.	3.8	7
87	Disruption of ζ-Carotene Desaturase Protein ALE1 Leads to Chloroplast Developmental Defects and Seedling Lethality. Journal of Agricultural and Food Chemistry, 2019, 67, 11607-11615.	5.2	7
88	A 3-bp deletion of WLS5 gene leads to weak growth and early leaf senescence in rice. Rice, 2019, 12, 26.	4.0	6
89	Whole genome sequence of Pseudomonas aeruginosa F9676, an antagonistic bacterium isolated from rice seed. Journal of Biotechnology, 2015, 211, 77-78.	3.8	5
90	Genome Sequence of <i>Micromonospora terminaliae</i> TMS7 ^T , a New Endophytic Actinobacterium Isolated from the Medicinal Plant <i>Terminalia mucronata</i> . Molecular Plant-Microbe Interactions, 2020, 33, 721-723.	2.6	5

Longbiao Guo

#	Article	IF	CITATIONS
91	A-to-I mRNA Editing in a Ferric Siderophore Receptor Improves Competition for Iron in Xanthomonas oryzae pv. oryzicola. Microbiology Spectrum, 2021, 9, e0157121.	3.0	5
92	Effects of Sample Size on Plant Single-Cell RNA Profiling. Current Issues in Molecular Biology, 2021, 43, 1685-1697.	2.4	4
93	Loci and Natural Alleles for Low-Nitrogen-Induced Growth Response Revealed by the Genome-Wide Association Study Analysis in Rice (Oryza sativa L.). Frontiers in Plant Science, 2021, 12, 770736.	3.6	4
94	Functional Analysis of Three Rice Chloroplast Transit Peptides. Rice Science, 2019, 26, 11-20.	3.9	3
95	OsCRS2 encoding a peptidyl-tRNA hydrolase protein is essential for chloroplast development in rice. Plant Growth Regulation, 2020, 92, 535-545.	3.4	3
96	Identification and Characterization of Short Crown Root 8, a Temperature-Sensitive Mutant Associated with Crown Root Development in Rice. International Journal of Molecular Sciences, 2021, 22, 9868.	4.1	2
97	The complete chloroplast genome of weedy rice Oryza sativa f. spontanea. Mitochondrial DNA Part B: Resources, 2021, 6, 3016-3017.	0.4	1
98	Short-term stress from high light and high temperature triggers transcriptomic changes in the <i>local lesions 1</i> rice mutant. Plant Signaling and Behavior, 2019, 14, e1649568.	2.4	0
99	Use of RNAi With OsMYB76R as a Reporter for Candidate Genes Can Efficiently Create and Verify Gametophytic Male Sterility in Rice. Frontiers in Plant Science, 2021, 12, 728193.	3.6	Ο