Marina Ferrarini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7667623/publications.pdf Version: 2024-02-01

MADINA FEDDADINI

#	Article	IF	CITATIONS
1	Immunometabolic activation of macrophages leads to cytokine production in the pathogenesis of <i>KRAS</i> -mutated histiocytosis. Rheumatology, 2022, 61, e93-e96.	1.9	2
2	3D Models as a Tool to Assess the Anti-Tumor Efficacy of Therapeutic Antibodies: Advantages and Limitations. Antibodies, 2022, 11, 46.	2.5	3
3	A Novel Histiocytosis With Synovial and Skin Involvement. Annals of Internal Medicine, 2021, 174, 273-274.	3.9	2
4	Oncogene-induced maladaptive activation of trained immunity in the pathogenesis and treatment of Erdheim-Chester disease. Blood, 2021, 138, 1554-1569.	1.4	10
5	miR-146a-5p impairs melanoma resistance to kinase inhibitors by targeting COX2 and regulating NFkB-mediated inflammatory mediators. Cell Communication and Signaling, 2020, 18, 156.	6.5	18
6	ATR addiction in multiple myeloma: synthetic lethal approaches exploiting established therapies. Haematologica, 2020, 105, 2440-2447.	3.5	12
7	Erdheim-Chester disease: An in vivo human model of Mï• activation at the crossroad between chronic inflammation and cancer. Journal of Leukocyte Biology, 2020, 108, 591-599.	3.3	9
8	3D culture of Erdheim-Chester disease tissues unveils histiocyte metabolism as a new therapeutic target. Annals of the Rheumatic Diseases, 2019, 78, 862-864.	0.9	8
9	Modeling multiple myeloma-bone marrow interactions and response to drugs in a 3D surrogate microenvironment. Haematologica, 2018, 103, 707-716.	3.5	36
10	The fibrogenic chemokine CCL18 is associated with disease severity in Erdheim-Chester disease. Oncolmmunology, 2018, 7, e1440929.	4.6	17
11	3D-Dynamic Culture Models of Multiple Myeloma. Methods in Molecular Biology, 2017, 1612, 177-190.	0.9	10
12	Tocilizumab in patients with multisystem Erdheim–Chester disease. OncoImmunology, 2017, 6, e1318237.	4.6	29
13	HIF-1α regulates the interaction of chronic lymphocytic leukemia cells with the tumor microenvironment. Blood, 2016, 127, 1987-1997.	1.4	52
14	Plasma Chromogranin A as a marker of cardiovascular involvement in Erdheim–Chester disease. Oncolmmunology, 2016, 5, e1181244.	4.6	14
15	Chromogranin A Is Preferentially Cleaved into Proangiogenic Peptides in the Bone Marrow of Multiple Myeloma Patients. Cancer Research, 2016, 76, 1781-1791.	0.9	24
16	Angiopoietin-2 in Bone Marrow milieu promotes Multiple Myeloma-associated angiogenesis. Experimental Cell Research, 2015, 330, 1-12.	2.6	17
17	BRAF ^{V600E} -mutation is invariably present and associated to oncogene-induced senescence in Erdheim-Chester disease. Annals of the Rheumatic Diseases, 2015, 74, 1596-1602.	0.9	94
18	TNF-Â in Erdheim-Chester disease pericardial effusion promotes endothelial leakage in vitro and is neutralized by infliximab. Rheumatology, 2014, 53, 198-200.	1.9	16

MARINA FERRARINI

#	Article	IF	CITATIONS
19	Consensus guidelines for the diagnosis and clinical management of Erdheim-Chester disease. Blood, 2014, 124, 483-492.	1.4	462
20	Ex-Vivo Dynamic 3-D Culture of Human Tissues in the RCCSâ,,¢ Bioreactor Allows the Study of Multiple Myeloma Biology and Response to Therapy. PLoS ONE, 2013, 8, e71613.	2.5	64
21	Innovative Models to Assess Multiple Myeloma Biology and the Impact of Drugs. , 2013, , .		5
22	Tumor Necrosis Factor α As a Master Regulator of Inflammation in Erdheim-Chester Disease: Rationale for the Treatment of Patients With Infliximab. Journal of Clinical Oncology, 2012, 30, e286-e290.	1.6	79
23	A matter of life and death: More members of the TNF receptor family join human γδT lymphocytes. European Journal of Immunology, 2012, 42, 803-804.	2.9	2
24	Bortezomib induces autophagic death in proliferating human endothelial cells. Experimental Cell Research, 2010, 316, 1010-1018.	2.6	65
25	Erdheim-Chester disease: report on a case and new insights on its immunopathogenesis. Rheumatology, 2010, 49, 1203-1206.	1.9	49
26	Redox homeostasis modulates the sensitivity of myeloma cells to bortezomib. British Journal of Haematology, 2008, 141, 494-503.	2.5	65
27	NF-κB Modulates Sensitivity to Apoptosis, Proinflammatory and Migratory Potential in Short- versus Long-Term Cultured Human γδ Lymphocytes. Journal of Immunology, 2008, 181, 5857-5864.	0.8	22
28	Constitutive expression of IL-12Rβ2 on human multiple myeloma cells delineates a novel therapeutic target. Blood, 2008, 112, 750-759.	1.4	38
29	Hypoxia-inducible transcription factor–1 alpha determines sensitivity of endothelial cells to the proteosome inhibitor bortezomib. Blood, 2007, 109, 2565-2570.	1.4	74
30	Variations of the perforin gene in patients with autoimmunity/lymphoproliferation and defective Fas function. Blood, 2006, 108, 3079-3084.	1.4	63
31	Immunohistochemical evidence of a cytokine and chemokine network in three patients with Erdheim-Chester disease: Implications for pathogenesis. Arthritis and Rheumatism, 2006, 54, 4018-4022.	6.7	95
32	MICA Expressed by Multiple Myeloma and Monoclonal Gammopathy of Undetermined Significance Plasma Cells Costimulates Pamidronate-Activated γî´Lymphocytes. Cancer Research, 2005, 65, 7502-7508.	0.9	66
33	A Relapsing Inflammatory Syndrome and Active Human Herpesvirus 8 Infection. New England Journal of Medicine, 2005, 353, 156-163.	27.0	27
34	Inherited Perforin andFasMutations in a Patient with Autoimmune Lymphoproliferative Syndrome and Lymphoma. New England Journal of Medicine, 2004, 351, 1419-1424.	27.0	65
35	Double-edged effect of Vγ9/Vδ2 T lymphocytes on viral expression in an in vitro model of HIV-1/mycobacteria co-infection. European Journal of Immunology, 2003, 33, 252-263.	2.9	23
36	CD30 ligation differentially affects CXCR4-dependent HIV-1 replication and soluble CD30 secretion in	2.0	15

³⁶ non-Hodgkin cell lines and inl³ l[°] T lymphocytes. European Journal of Immunology, 2003, 33, 3136-3145.^{2.9} ¹⁵

MARINA FERRARINI

#	Article	IF	CITATIONS
37	Macrophages exposed to Mycobacterium tuberculosis release chemokines able to recruit selected leucocyte subpopulations: focus on gammadelta cells. Immunology, 2003, 108, 365-374.	4.4	101
38	Human γδT cells: a nonredundant system in the immune-surveillance against cancer. Trends in Immunology, 2002, 23, 14-18.	6.8	144
39	Skewing of cytotoxic activity and chemokine production, but not of chemokine receptor expression, in human type-1/-2 γ δT lymphocytes. European Journal of Immunology, 2002, 32, 2934-2943.	2.9	19
40	Engagement of CD30 shapes the secretion of cytokines by human γ δT cells. European Journal of Immunology, 2000, 30, 2172-2180.	2.9	22
41	Engagement of CD30 shapes the secretion of cytokines by human γ δT cells. European Journal of Immunology, 2000, 30, 2172.	2.9	18
42	Blockade of the Fas-triggered intracellular signaling pathway in human melanomas is circumvented by cytotoxic lymphocytes. , 1999, 81, 573-579.		19
43	Mycobacterium tuberculosisexploits the CD95/CD95 ligand system of γ δT cells to cause apoptosis. European Journal of Immunology, 1998, 28, 1798-1806.	2.9	46
44	Autocrine Nitric Oxide Modulates CD95-induced Apoptosis in γδT Lymphocytes. Journal of Biological Chemistry, 1997, 272, 23211-23215.	3.4	102
45	Killing of Laminin Receptor-Positive Human Lung Cancers by Tumor-Infiltrating Lymphocytes Bearing γδ+ T-Cell Receptors. Journal of the National Cancer Institute, 1996, 88, 436-441.	6.3	60
46	Distinct pattern of HSP72 and monomeric laminin receptor expression in human lung cancers infiltrated by γ/δT lymphocytes. International Journal of Cancer, 1994, 57, 486-490.	5.1	34
47	Constitutive expression of the heat shock protein 72 kDa in human melanoma cells. Cancer Letters, 1994, 85, 211-216.	7.2	29
48	Unusual expression and localization of heat-shock proteins in human tumor cells. International Journal of Cancer, 1992, 51, 613-619.	5.1	417
49	Selective lysis of the autologous tumor by ÎTCS1+ γ/Ĩ′+ tumor-infiltrating lymphocytes from human lung carcinomas. European Journal of Immunology, 1990, 20, 2685-2689.	2.9	97
50	Purification of a glycosaminoglycan-stimulatory lymphokine from supernatants of in vitro-activated human mononuclear cells. Clinical Immunology and Immunopathology, 1989, 50, 122-131.	2.0	11
51	Heterogeneous synthetic phenotype of cloned scleroderma fibroblasts may be due to aberrant regulation in the synthesis of connective tissues. Arthritis and Rheumatism, 1988, 31, 1221-1229.	6.7	34
52	3D Models of Surrogate Multiple Myeloma Bone Marrow Microenvironments: Insights on Disease Pathophysiology and Patient-Specific Response to Drugs. , 0, , .		0