
Kazuyuki Maeda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7667617/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metal phosphonate open-framework materials. Microporous and Mesoporous Materials, 2004, 73, 47-55.	4.4	337
2	AlMepO-α: A Novel Open-Framework Aluminum Methylphosphonate with Organo-Lined Unidimensional Channels. Angewandte Chemie International Edition in English, 1995, 34, 1199-1201.	4.4	166
3	Postsynthesis Hydrothermal Restructuring of M41S Mesoporous Molecular Sieves in Water. Journal of Physical Chemistry B, 1999, 103, 1216-1222.	2.6	156
4	Synthesis of the First Microporous Aluminum Phosphonate with Organic Groups Covalently Bonded to the Skeleton. Angewandte Chemie International Edition in English, 1994, 33, 2335-2337.	4.4	131
5	Super Flexibility of a 2D Cu-Based Porous Coordination Framework on Gas Adsorption in Comparison with a 3D Framework of Identical Composition: Framework Dimensionality-Dependent Gas Adsorptivities. Journal of the American Chemical Society, 2011, 133, 10512-10522.	13.7	112
6	Microporous Brookite-Phase Titania Made by Replication of a Metal–Organic Framework. Journal of the American Chemical Society, 2013, 135, 16276-16279.	13.7	98
7	Structure of aluminium methylphosphonate, AlMepO-β, with unidimensional channels formed from ladder-like organic–inorganic polymer chains. Journal of the Chemical Society Chemical Communications, 1995, , 1033-1034.	2.0	91
8	Characterization and Gas Adsorption Properties of Aluminum Methylphosphonates with Organically Lined Unidimensional Channels. Journal of Physical Chemistry B, 1997, 101, 4402-4412.	2.6	77
9	The first lanthanide organophosphonate nanosheet by exfoliation of layered compounds. Chemical Communications, 2013, 49, 552-554.	4.1	72
10	Fabrication of metal–organic framework nanosheets and nanorolls with N-donor type bridging ligands. Dalton Transactions, 2013, 42, 15267.	3.3	69
11	Transformation of intercalated layered silicates to zeolites in the solid state. Advanced Materials, 1996, 8, 759-762.	21.0	57
12	Thermal behaviour of alumina from aluminium alkoxide reacted with complexing agent. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 97.	1.7	48
13	Effect of malic acid on structure of silicon alkoxide derived silica. Journal of Non-Crystalline Solids, 1997, 212, 40-48.	3.1	48
14	Structure and properties of TiO2î—,SiO2 prepared by sol-gel method in the presence of tartaric acid. Materials Research Bulletin, 1997, 32, 1303-1311.	5.2	47
15	Gas Adsorption Mechanism and Kinetics of an Elastic Layer-Structured Metal–Organic Framework. Journal of Physical Chemistry C, 2012, 116, 4157-4162.	3.1	44
16	Preparation and characterization of porous silica spheres by the sol–gel method in the presence of tartaric acid. Journal of Materials Chemistry, 1997, 7, 767-771.	6.7	43
17	The effect of preparation methods on the properties of zirconia/silicas. Journal of Molecular Catalysis, 1994, 94, 85-96.	1.2	35
18	Effect of preparation methods on properties of alumina/titanias. Journal of Materials Chemistry, 1994, 4, 585.	6.7	35

#	Article	IF	CITATIONS
19	Synthesis, Crystal Structure, and Characterization of Layered Aluminum Methylphosphonate. Bulletin of the Chemical Society of Japan, 1997, 70, 345-349.	3.2	34
20	New insight into mesoporous silica for nano metal–organic framework. Journal of Colloid and Interface Science, 2012, 384, 110-115.	9.4	34
21	2,4-Dihydroxy-7-methoxy-2 H -1,4-benzoxazin-3(4 H)-one (DIMBOA) inhibits trichothecene production by Fusarium graminearum through suppression of Tri6 expression. International Journal of Food Microbiology, 2015, 214, 123-128.	4.7	34
22	Materials chemistry communications. New preparation method for highly siliceous zeolite films. Journal of Materials Chemistry, 1992, 2, 141.	6.7	33
23	Gate adsorption of CO2 on a flexible one-dimensional copper-based coordination polymer crystal. Chemical Communications, 2012, 48, 11316.	4.1	32
24	Synthesis of a zeolite film on a mercury surface. Advanced Materials, 1996, 8, 517-520.	21.0	30
25	Structural Investigation of a Flexible MOF [Cu(BF ₄) ₂ (1,3-bis(4-pyridyl)propane) ₂] Showing Selective Gate Adsorption with Dynamic Pore-Opening/Pore-Closing Processes. Journal of Physical Chemistry C, 2016, 120. 21571-21579.	3.1	26
26	Selective molecular-gating adsorption in a novel copper-based metal–organic framework. Journal of Materials Chemistry A, 2018, 6, 5910-5918.	10.3	23
27	Synthesis and characterization of a new layered aluminophosphate templated with 1,3-diaminopropane: [H3N(CH2)3NH3]0.5[AlPO4(OH)(OH2)]·H2O â€. Dalton Transactions RSC, 2000, , 2457-2462.	2.3	22
28	Effect of preparation methods on properties of amorphous alumina/silicas. Journal of Materials Chemistry, 1994, 4, 1131.	6.7	21
29	A set of heterologous promoters useful for investigating gene functions in Fusarium graminearum. Mycotoxins, 2014, 64, 147-152.	0.2	21
30	Liquid/vapor-induced reversible dynamic structural transformation of a three-dimensional Cu-based MOF to a one-dimensional MOF showing gate adsorption. Dalton Transactions, 2017, 46, 6762-6768.	3.3	21
31	Hydroxylations of trichothecene rings in the biosynthesis of <i>Fusarium</i> trichothecenes: evolution of alternative pathways in the nivalenol chemotype. Environmental Microbiology, 2016, 18, 3798-3811.	3.8	20
32	Selective formation of thin film iron garnet by complexing agent-assisted sol-gel processing. Journal of Non-Crystalline Solids, 1992, 147-148, 442-446.	3.1	19
33	Selective formation of spinel iron oxide in thin films by complexing agent-assisted sol-gel processing. Journal of Sol-Gel Science and Technology, 1997, 8, 77-81.	2.4	19
34	New layered copper 1,3,5-benzenetriphosphonates pillared with N-donor ligands: their synthesis, crystal structures, and adsorption properties. Dalton Transactions, 2015, 44, 12717-12725.	3.3	17
35	Formation of size-controlled micro-pores in amorphous mixed oxides by an advanced sol–gel method. Journal of the Chemical Society Chemical Communications, 1990, , 1211-1212.	2.0	16
36	Control of the specific surface area of silica by a sol–gel process using 2-methylpentane-2,4-diol. Journal of Materials Chemistry, 1995, 5, 1893-1897.	6.7	16

#	Article	IF	CITATIONS
37	Synthesis of cordierite by complexing agent-assisted sol–gel procedure. Journal of the Chemical Society Chemical Communications, 1990, , 1268-1269.	2.0	15
38	Organozeolite materials and their properties. Catalysis Surveys From Asia, 1999, 3, 119-126.	1.2	15
39	Syntheses, Spectroscopic Properties, Crystal Structures, and Antitumor Activities of the Optically Isomeric Mandelate Chelates, Mandelato(trans-1,2-diaminocyclohexane)platinum(II). Bulletin of the Chemical Society of Japan, 1989, 62, 3239-3246.	3.2	14
40	Reversible Photoswitching Liquid-phase Adsorption on Azobenzene Derivative-grafted Mesoporous Silica. Chemistry Letters, 2006, 35, 736-737.	1.3	14
41	Synthesis of Microporous Aluminum Methylphosphonate AlMepO-αby Steam-Induced Topotactic Transformation of AlMepO-β. Chemistry Letters, 1997, 26, 879-880.	1.3	13
42	Preparation and Intercalation Properties of Novel Layered Zinc 1,3,5-Benzenetriphosphonates Composed of Anionic Hybrid Layers. Chemistry Letters, 2011, 40, 215-217.	1.3	13
43	The first synthesis of organosilyl-substituted aluminophosphate molecular sieves. Chemical Communications, 2007, , 283-285.	4.1	12
44	l-Threonine and its analogue added to autoclaved solid medium suppress trichothecene production by Fusarium graminearum. Archives of Microbiology, 2017, 199, 945-952.	2.2	12
45	Identification and Characterization of an Inhibitor of Trichothecene 3- <i>O</i> -Acetyltransferase, TRI101, by the Chemical Array Approach. Bioscience, Biotechnology and Biochemistry, 2013, 77, 1958-1960.	1.3	11
46	Effect of disrupting the trichothecene efflux pump encoded by <i>FgTri12</i> in the nivalenol chemotype of <i>Fusarium graminearum</i> . Journal of General and Applied Microbiology, 2015, 61, 93-96.	0.7	11
47	Oligosaccharides containing an α-(1 → 2) (glucosyl/xylosyl)-fructosyl linkage as inducer molecules of trichothecene biosynthesis for Fusarium graminearum. International Journal of Food Microbiology, 2016, 238, 215-221.	4.7	11
48	Preparation of mesostructured silica/anodic alumina composite membranes in mild conditions using acetic acid. Microporous and Mesoporous Materials, 2008, 112, 603-611.	4.4	10
49	Identification of amino acids negatively affecting Fusarium trichothecene biosynthesis. Antonie Van Leeuwenhoek, 2019, 112, 471-478.	1.7	10
50	Preparation and characterization ofL-tartaric acid–silica composites recognizing molecular asymmetry. Journal of Materials Chemistry, 1997, 7, 1519-1525.	6.7	9
51	Formation of zeolite-like zinc 1,3,5-benzenetriphosphonate open-frameworks by topotactic pillaring of anionic layers. Dalton Transactions, 2013, 42, 10424.	3.3	9
52	A New Synthetic Route to Microporous Silica with Wellâ€Đefined Pores by Replication of a Metal–Organic Framework. Chemistry - A European Journal, 2015, 21, 12148-12152.	3.3	9
53	Preparation of silicas combined with optically active organic compounds: optical resolution of metal chelate complexes on the silica composites. Journal of Chromatography A, 1995, 697, 279-287.	3.7	8
54	Tuning of gate adsorption: modification of a flexible metal–organic framework by secondary organic ligands. Dalton Transactions, 2014, 43, 8174-8177.	3.3	8

#	Article	IF	CITATIONS
55	Mesoporous Zirconium Phenylenesiliconateâ€phosphonate Hybrids with Ordered Lamellar Nanostructures. Chemistry - A European Journal, 2015, 21, 17091-17099.	3.3	8
56	Appearance of a new leaf rot disease on common ice plant. Journal of General Plant Pathology, 2010, 76, 303-309.	1.0	7
57	Anisotropic thermal expansion of a 3D metal–organic framework with hydrophilic and hydrophobic pores. Journal of Solid State Chemistry, 2015, 221, 126-131.	2.9	7
58	Identification of a trichothecene production inhibitor by chemical array and library screening using trichodiene synthase as a target protein. Pesticide Biochemistry and Physiology, 2017, 138, 1-7.	3.6	7
59	Molecular genetic characterization of <i>Fusarium graminearum</i> genes identified as encoding a precocene II-binding protein. Mycotoxins, 2017, 67, 1-3.	0.2	7
60	Exploring an Artificial Metabolic Route in <i>Fusarium sporotrichioides</i> : Production and Characterization of 7-Hydroxy T-2 Toxin. Journal of Natural Products, 2018, 81, 1041-1044.	3.0	7
61	Reduced Toxicity of Trichothecenes, Isotrichodermol, and Deoxynivalenol, by Transgenic Expression of the Tri101 3-O-Acetyltransferase Gene in Cultured Mammalian FM3A Cells. Toxins, 2019, 11, 654.	3.4	7
62	Inhibition of Fusarium trichothecene biosynthesis by yeast extract components extractable with ethyl acetate. International Journal of Food Microbiology, 2019, 289, 24-29.	4.7	7
63	Ordered Microporous Layered Lanthanide 1,3,5â€Benzenetriphosphonates Pillared with Cationic Organic Molecules. Chemistry - A European Journal, 2015, 21, 6257-6264.	3.3	6
64	Characterization of the acivicin effects on trichothecene production by <i>Fusarium graminearum</i> species complex. Journal of General and Applied Microbiology, 2016, 62, 272-276.	0.7	6
65	Substrate specificities of Fusarium biosynthetic enzymes explain the genetic basis of a mixed chemotype producing both deoxynivalenol and nivalenol-type trichothecenes. International Journal of Food Microbiology, 2020, 320, 108532.	4.7	6
66	Control of the size of platinum particles on silica surfaces using organic-inorganic composites. Journal of Materials Chemistry, 1999, 9, 995-1000.	6.7	5
67	Evaluation of toxicities of 7-hydroxyisotrichodermin and 8-hydroxyisotrichodermin, shunt intermediates in the biosynthetic grid of deoxynivalenol, by using a sensitive yeast assay. Mycotoxins, 2015, 65, 7-9.	0.2	5
68	Identification and Characterization of Small Molecule Compounds That Modulate Trichothecene Production by <i>Fusarium graminearum</i> . ACS Chemical Biology, 2018, 13, 1260-1269.	3.4	5
69	Critical nuclei size effect in the densification of nanostructured niobia ceramics. Materials Research Bulletin, 1999, 34, 225-231.	5.2	4
70	Preparation of Hybrid Ordered Inorganic–Organic Mesostructures from an Asymmetrically Bridged Organic Precursor Containing Both Silanolate and Phosphonate. Chemistry Letters, 2010, 39, 496-497.	1.3	4
71	Production of 3-acetylnivalenol by transgenic Fusarium graminearum expressing Tri13 of type A trichothecene-producer: participation of the encoded cytochrome P450 monooxygenase in type B trichothecene biosynthesis. Mycotoxins, 2012, 62, 83-90.	0.2	4
72	Difference of the responses between SnO ₂ and ZnO to reducing gases at 300°C and below via optical and electrical approaches. Journal of the Ceramic Society of Japan, 2014, 122, 96-103.	1.1	4

#	Article	IF	CITATIONS
73	Trichothecene production in axenic liquid culture of <i>Fusarium graminearum</i> using xylose as a carbon source. Mycotoxins, 2016, 66, 17-19.	0.2	4
74	Re-examination of genetic and nutritional factors related to trichothecene biosynthesis in Fusarium graminearum. Bioscience, Biotechnology and Biochemistry, 2016, 80, 414-417.	1.3	4
75	Impact of nitrogen metabolism-associated culture pH changes on regulation of Fusarium trichothecene biosynthesis: revision of roles of polyamine agmatine and transcription factor AreA. Current Genetics, 2020, 66, 1179-1190.	1.7	4
76	The formation of rings of platinum dots and the control of the size of platinum particles on silica surfaces using organic?Inorganic composites. Advanced Materials, 1994, 6, 856-858.	21.0	3
77	Synthesis and microencapsulation of organo-silica particles. Journal of Materials Chemistry, 2006, 16, 2170.	6.7	3
78	Preparation of mesoporous silica replica using ordered mesoporous carbon by vapor phase transport of silica source. Journal of Porous Materials, 2010, 17, 305-312.	2.6	3
79	Preparation of Nanoporous Inorganic–Organic Hybrids Containing Zirconium and Asymmetrically Linking O3P–C6H4–SiO3 Unit. Bulletin of the Chemical Society of Japan, 2014, 87, 570-572.	3.2	3
80	Acetyltransferase activity in <i>Pseudomonas</i> sp. capable of acetylating the C-4 hydroxyl group of nivalenol-type trichothecenes. Journal of General and Applied Microbiology, 2016, 62, 326-329.	0.7	3
81	Syntheses, Crystal Structures, and Antitumor Activities of the Optically Isomeric Mandelate Chelates, Mandelato(trans-1,2-diaminocyclohexane)platinum(II). Chemistry Letters, 1989, 18, 1377-1380.	1.3	2
82	Nuclear localization and relative stability of the zinc finger domain of TRI6 trichothecene regulator. Mycotoxins, 2016, 66, 13-15.	0.2	2
83	Studies on <i>Fusarium</i> trichothecene biosynthesis: functional characterization of orthologous pathway genes and development of various types of inhibitors. Mycotoxins, 2018, 68, 77-82.	0.2	2
84	A promoter of Fusarium graminearum Tri4 does not function when placed at the end of the trichothecene gene cluster. Mycotoxins, 2013, 63, 17-25.	0.2	2
85	Interlayer Modification of a Layered Silicate RUB-18 with 4-Phosphonophenylsilane and Its Surface Acidic Functions. Inorganic Chemistry, 2022, 61, 5255-5261.	4.0	2
86	Characterization and adsorption properties of organosilyl aluminophosphate hybrids. Journal of Porous Materials, 2012, 19, 935-942.	2.6	1
87	Accumulation of an unusual trichothecene shunt metabolite in liquid culture of <i>Fusarium graminearum</i> with methionine as the sole nitrogen source. Mycotoxins, 2017, 67, 7-9.	0.2	1
88	First preparation of microporous AFY-type MeAPOs by topotactic pillaring of lamellar aluminophosphate precursors. CrystEngComm, 2020, 22, 3419-3423.	2.6	1
89	The effect of chemicals on somatic homologous recombination in the rice blast fungus: its possible application for detection of mycotoxins. Mycotoxins, 2014, 64, 141-146.	0.2	1
90	Comparison of HPLC-UV and LC-MS methods for evaluating the amount of deoxynivalenol-type trichothecenes in axenic solid culture of <i>Fusarium graminearum</i> . Mycotoxins, 2019, 69, 15-17.	0.2	1

#	Article	IF	CITATIONS
91	Genome engineering of Fusarium species by using positive and negative selection approaches for studying regulation of mycotoxin production. Mycotoxins, 2013, 63, 85-92.	0.2	1
92	Effect of Organic Ligands on Properties of Alumina-Zirconia Composite Powder by Sol-Gel Method. Journal of the Ceramic Society of Japan, 1996, 104, 781-784.	1.3	0
93	Effect of Organic Ligands Used in Sol-Gel Process on the Formation of Mullite. Journal of Sol-Gel Science and Technology, 1997, 8, 101-106.	2.4	0
94	Comment on "27Al Multiple-Quantum Magic Angle Spinning NMR Study of the Thermal Transformation between Microporous Aluminum Methylphosphonates AlMepO-l² and AlMepO-l̂±â€• Journal of Physical Chemistry B, 2000, 104, 9765-9766.	2.6	0
95	Visually Recognizable Anion Exchange of a Three-dimensional Copper-based Interpenetrated Porous Coordination Polymer. Chemistry Letters, 2014, 43, 857-859.	1.3	0
96	Introduction of a leptomycin-sensitive mutation into <i>Fusarium graminearum</i> . Mycotoxins, 2016, 66, 9-11.	0.2	0
97	Isolation of <i>Fusarium asiaticum</i> from creeping bentgrass with blight symptom and its trichothecene chemotype. Mycotoxins, 2021, , .	0.2	0
98	Elucidation of Nitrogen Adsorption Behavior of AlMepO-α by In-Situ Powder X-ray Diffraction Study. Bulletin of the Chemical Society of Japan, 2021, 94, 1499-1501.	3.2	0
99	Accumulation of 4-Deoxy-7-hydroxytrichothecenes, but Not 4,7-Dihydroxytrichothecenes, in Axenic Culture of a Transgenic Nivalenol Chemotype Expressing the NX-Type FgTri1 Gene. International Journal of Molecular Sciences, 2021, 22, 11428.	4.1	0
100	Basic research of the regulation mechanisms of trichothecene production for reduction of the mycotoxin contamination. Mycotoxins, 2014, 64, 69-74.	0.2	0
101	Synthetic liquid media for the study of trichothecene biosynthesis regulation in <i>Fusarium graminearum</i> . Mycotoxins, 2020, 70, 57-59.	0.2	0