So-Youn Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7666558/publications.pdf

Version: 2024-02-01

38	1,178	18	33
papers	citations	h-index	g-index
39	39	39	1616
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Effects of PD-1 blockade on ovarian follicles in a prepubertal female mouse. Journal of Endocrinology, 2022, 252, 15-30.	2.6	6
2	Evidence of cancer therapy-induced chronic inflammation in the ovary across multiple species: A potential cause of persistent tissue damage and follicle depletion. Journal of Reproductive Immunology, 2022, 150, 103491.	1.9	2
3	Visceral adipose tissue remodeling in pancreatic ductal adenocarcinoma cachexia: the role of activin A signaling. Scientific Reports, 2022, 12, 1659.	3.3	8
4	Development of ovarian tumour causes significant loss of muscle and adipose tissue: a novel mouse model for cancer cachexia study. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 1289-1301.	7.3	17
5	3D bioprinted white adipose model for in vitro study of cancer-associated cachexia induced adipose tissue remodeling. Biofabrication, 2022, 14, 034106.	7.1	9
6	Proton Radiotherapy to Preserve Fertility and Endocrine Function: A Translational Investigation. International Journal of Radiation Oncology Biology Physics, 2021, 109, 84-94.	0.8	5
7	Activin A Plays a Critical Role in Adipose Tissue Wasting in the Progression of Cancer Cachexia. Journal of the Endocrine Society, 2021, 5, A40-A40.	0.2	O
8	Pancreatic Ductal Adenocarcinoma Highly Expresses Activin A: Implications in Adipose Tissue and Cancer Cachexia. Journal of the Endocrine Society, 2021, 5, A53-A54.	0.2	O
9	The Role of Mutant p63 in Female Fertility. International Journal of Molecular Sciences, 2021, 22, 8968.	4.1	8
10	α-Linolenic acid-enriched butter attenuated high fat diet-induced insulin resistance and inflammation by promoting bioconversion of n-3 PUFA and subsequent oxylipin formation. Journal of Nutritional Biochemistry, 2020, 76, 108285.	4.2	29
11	Continuous treatment with cisplatin induces the oocyte death of primordial follicles without activation. FASEB Journal, 2020, 34, 13885-13899.	0.5	16
12	Association between dental caries and adverse pregnancy outcomes. Scientific Reports, 2020, 10, 5309.	3.3	8
13	Transient inhibition of p53 homologs protects ovarian function from two distinct apoptotic pathways triggered by anticancer therapies. Cell Death and Differentiation, 2019, 26, 502-515.	11.2	53
14	Risk of Adverse Obstetric Outcomes and the Abnormal Growth of Offspring in Women with a History of Thyroid Cancer. Thyroid, 2019, 29, 879-885.	4.5	19
15	Inhibitors of apoptosis protect the ovarian reserve from cyclophosphamide. Journal of Endocrinology, 2019, 240, 243-256.	2.6	85
16	Poorly-Controlled Type 1 Diabetes Mellitus Impairs LH-LHCGR Signaling in the Ovaries and Decreases Female Fertility in Mice. Yonsei Medical Journal, 2019, 60, 667.	2.2	10
17	Consequences of chemotherapeutic agents on primordial follicles and future clinical applications. Obstetrics and Gynecology Science, 2019, 62, 382.	1.6	13
18	Hormone Effects on Follicular Growth and Differentiation. , 2018, , 172-175.		0

#	Article	IF	CITATIONS
19	New Insights into the Role of Phosphoinositide 3-Kinase Activity in the Physiology of Immature Oocytes: Lessons from Recent Mouse Model Studies. European Medical Journal Reproductive Health, 2018, 3, 119-125.	1.0	13
20	Downregulation of the Apelinergic Axis Accelerates Aging, whereas Its Systemic Restoration Improves the Mammalian Healthspan. Cell Reports, 2017, 21, 1471-1480.	6.4	50
21	Ovary is necessary to the health of uterus. Journal of Gynecologic Oncology, 2016, 27, e35.	2.2	4
22	Insights into granulosa cell tumors using spontaneous or genetically engineered mouse models. Clinical and Experimental Reproductive Medicine, 2016, 43, 1.	1.5	7
23	Toward precision medicine for preserving fertility in cancer patients: existing and emerging fertility preservation options for women. Journal of Gynecologic Oncology, 2016, 27, e22.	2.2	105
24	Fertility preservation option in young women with ovarian cancer. Future Oncology, 2016, 12, 1695-1698.	2.4	19
25	Constitutive Activation of PI3K in Oocyte Induces Ovarian Granulosa Cell Tumors. Cancer Research, 2016, 76, 3851-3861.	0.9	35
26	Ovarian Follicle Biology and the Basis for Gonadotoxicity. , 2015, , 3-20.		3
27	Geography of Follicle Formation in the Embryonic Mouse Ovary Impacts Activation Pattern During the First Wave of Folliculogenesis1. Biology of Reproduction, 2015, 93, 88.	2.7	32
28	Cell Autonomous Phosphoinositide 3-Kinase Activation in Oocytes Disrupts Normal Ovarian Function Through Promoting Survival and Overgrowth of Ovarian Follicles. Endocrinology, 2015, 156, 1464-1476.	2.8	51
29	Rescue of platinum-damaged oocytes from programmed cell death through inactivation of the p53 family signaling network. Cell Death and Differentiation, 2013, 20, 987-997.	11.2	104
30	A truncated, activin-induced Smad3 isoform acts as a transcriptional repressor of $FSH\hat{l}^2$ expression in mouse pituitary. Molecular and Cellular Endocrinology, 2011, 342, 64-72.	3.2	7
31	Foxl2, a Forkhead Transcription Factor, Modulates Nonclassical Activity of the Estrogen Receptor-α. Endocrinology, 2009, 150, 5085-5093.	2.8	31
32	Islet cell differentiation in liver by combinatorial expression of transcription factors Neurogenin-3, BETA2, and RIPE3b1. Biochemical and Biophysical Research Communications, 2007, 354, 334-339.	2.1	40
33	Transcriptional Regulation of Glucose Sensors in Pancreatic β Cells and Liver. Current Diabetes Reviews, 2006, 2, 11-18.	1.3	25
34	Glucose-Stimulated Upregulation of GLUT2 Gene Is Mediated by Sterol Response Element–Binding Protein-1c in the Hepatocytes. Diabetes, 2005, 54, 1684-1691.	0.6	103
35	Identification and characterization of peroxisome proliferator response element in the mouse GLUT2 promoter. Experimental and Molecular Medicine, 2005, 37, 101-110.	7.7	36
36	Liver Glucokinase Can Be Activated by Peroxisome Proliferator-Activated Receptor-Â. Diabetes, 2004, 53, S66-S70.	0.6	48

So-Youn Kim

#	Article	IF	CITATION
37	SREBP-1c Mediates the Insulin-dependent Hepatic Glucokinase Expression. Journal of Biological Chemistry, 2004, 279, 30823-30829.	3.4	94
38	Peroxisomal Proliferator-Activated Receptor-Â Upregulates Glucokinase Gene Expression in Â-Cells. Diabetes, 2002, 51, 676-685.	0.6	83