Wangze Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7665960/publications.pdf

Version: 2024-02-01

		236925	302126
51	1,649 citations	25	39
papers	citations	h-index	g-index
68	68	60	1510
00	00	68	1512
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Metal-free multicomponent polymerization toward cationic polyamidines. Chinese Chemical Letters, 2022, 33, 2643-2647.	9.0	3
2	Poly (ADP-ribose) polymerase 1 (PARP1) inhibition promotes pulmonary metastasis of osteosarcoma by boosting ezrin phosphorylation. International Journal of Biological Sciences, 2022, 18, 1238-1253.	6.4	3
3	Brønsted Acid-Catalyzed the Synthesis of Sulfoximide Substituted Dihydropyranone Derivatives. Chinese Journal of Organic Chemistry, 2022, 42, 487.	1.3	2
4	Visible-Light-Induced <i>N</i> -Acylation of Sulfoximines. Organic Letters, 2022, 24, 2733-2737.	4.6	11
5	Multicomponent Polymerization toward Cationic Polymers for Efficient Gene Delivery. Macromolecular Rapid Communications, 2021, 42, 2000464.	3.9	7
6	Palladiumâ€Catalyzed Regioselective and Diastereoselective C â€Glycosylation by Allylâ€Allyl Coupling. Advanced Synthesis and Catalysis, 2021, 363, 846-850.	4.3	7
7	Linear and high-molecular-weight poly-porphyrins for efficient photodynamic therapy. Biomaterials Science, 2021, 9, 4630-4638.	5.4	13
8	Cu-Catalyzed four-component polymerization of alkynes, sulfonyl azides, nucleophiles and electrophiles. Polymer Chemistry, 2021, 12, 4347-4358.	3.9	7
9	Magnesium-mediated Wittig reagent-promoted Stereoselective synthesis of L-Sorbopyranoses from D-Glucopyranoses. Carbohydrate Research, 2021, 501, 108257.	2.3	O
10	Remote ether groups-directed regioselective and chemoselective cycloaddition of azides and alkynes. Chinese Chemical Letters, 2021, 32, 4019-4023.	9.0	11
11	Cationic Polyporphyrins as siRNA Delivery Vectors for Photodynamic and Gene Synergistic Anticancer Therapy. ACS Applied Materials & Samp; Interfaces, 2021, 13, 27513-27521.	8.0	18
12	Codelivery of High-Molecular-Weight Poly-porphyrins and HIF- $1\hat{l}\pm$ Inhibitors for <i>In Vivo</i> Synergistic Anticancer Therapy. Biomacromolecules, 2021, 22, 4783-4793.	5.4	6
13	Multicomponent polymerization toward biodegradable polymers with diverse responsiveness in tumor microenvironments. Polymer Chemistry, 2020, 11, 1198-1210.	3.9	22
14	Visible Light-Induced Amide Bond Formation. Organic Letters, 2020, 22, 371-375.	4.6	57
15	Copper-catalyzed thiolation of terminal aromatic alkynes to access alkynyl disulfides. Tetrahedron Letters, 2020, 61, 152256.	1.4	6
16	Iridium-catalyzed orthogonal and regioselective synthesis of triazole disulfides in aqueous media under mild conditions. Green Chemistry, 2020, 22, 2394-2398.	9.0	30
17	Rutheniumâ€Catalyzed Highly Regioselective Azideâ€Internal Thiocyanatoalkyne Cycloaddition under Mild Conditions: Experimental and Theoretical Studies. Advanced Synthesis and Catalysis, 2019, 361, 5258-5263.	4.3	19
18	Water-Soluble, Zwitterionic Poly-photosensitizers as Carrier-Free, Photosensitizer-Self-Delivery System for in Vivo Photodynamic Therapy. ACS Applied Materials & Interfaces, 2019, 11, 44007-44017.	8.0	20

#	Article	IF	Citations
19	Poly(photosensitizer) Nanoparticles for Enhanced in Vivo Photodynamic Therapy by Interrupting the $\mathbb{I}\in \widehat{a}\in \mathbb{I}$ Stacking and Extending Circulation Time. ACS Applied Materials & Samp; Interfaces, 2019, 11, 18224-18232.	8.0	30
20	Copper-catalyzed tandem annulation/enol nucleophilic addition to access multisubstituted indoles. Organic and Biomolecular Chemistry, 2019, 17, 2663-2669.	2.8	8
21	Copper-catalyzed cascade click/nucleophilic substitution reaction to access fully substituted triazolyl-organosulfurs. Organic and Biomolecular Chemistry, 2019, 17, 9933-9941.	2.8	13
22	Rhodium(I)â€Catalyzed Regioselective Azideâ€internal Alkynyl Trifluoromethyl Sulfide Cycloaddition and Azideâ€internal Thioalkyne Cycloaddition under Mild Conditions. Advanced Synthesis and Catalysis, 2019, 361, 469-475.	4.3	31
23	Rhodium(I)â€Catalyzed Azideâ€Alkyne Cycloaddition (RhAAC) of Internal Alkynylphosphonates with High Regioselectivities under Mild Conditions. Advanced Synthesis and Catalysis, 2018, 360, 2429-2434.	4.3	37
24	Regiodivergent Rhodium(I)-Catalyzed Azide–Alkyne Cycloaddition (RhAAC) To Access Either Fully Substituted Sulfonyl-1,2,3-triazoles under Mild Conditions. Organic Letters, 2018, 20, 6705-6709.	4.6	48
25	Iridium-Catalyzed Highly Regioselective and Diastereoselective Allylic Etherification To Access <i>cis</i> -2,6-Disubstituted Dihydropyridinones. Journal of Organic Chemistry, 2018, 83, 12822-12830.	3.2	7
26	Rhodium-Catalyzed Highly Regioselective and Stereoselective Intermolecular Hydrosilylation of Internal Ynamides under Mild Conditions. Journal of Organic Chemistry, 2018, 83, 6210-6216.	3.2	21
27	Enantioselective \hat{l} ±-Hydroxylation by Modified Salen-Zirconium(IV)-Catalyzed Oxidation of \hat{l}^2 -Keto Esters. Organic Letters, 2017, 19, 448-451.	4.6	29
28	De Novo Synthesis of Mono―and Oligosaccharides via Dihydropyran Intermediates. Chemistry - an Asian Journal, 2017, 12, 1027-1042.	3.3	34
29	Transition metal mediated carbonylative benzannulations. Organic and Biomolecular Chemistry, 2017, 15, 7490-7504.	2.8	32
30	Chiral catalyst-directed site-selective functionalization of hydroxyl groups in carbohydrates. Journal of Carbohydrate Chemistry, 2017, 36, 143-161.	1.1	12
31	Iridium-Catalyzed Highly Regioselective Azide–Ynamide Cycloaddition to Access 5-Amido Fully Substituted 1,2,3-Triazoles under Mild, Air, Aqueous, and Bioorthogonal Conditions. Organic Letters, 2017, 19, 6200-6203.	4.6	66
32	Rhodiumâ€Catalyzed Intramolecular [5+2] Cycloaddition of Inverted 3â€Acyloxyâ€1,4â€enyne and Alkyne: Experimental and Theoretical Studies. Chemistry - A European Journal, 2016, 22, 7079-7083.	3.3	13
33	Rhodiumâ€Catalyzed [5+2] Cycloaddition of 3â€Acyloxyâ€1,4â€enyne with Alkene or Allene. Advanced Synthesis and Catalysis, 2016, 358, 2007-2011.	4.3	16
34	Synthesis of Carbazoles and Carbazole-Containing Heterocycles via Rhodium-Catalyzed Tandem Carbonylative Benzannulations. Journal of Organic Chemistry, 2016, 81, 2930-2942.	3.2	53
35	Divergent Reactivity of Rhodium(I) Carbenes Derived from Indole Annulations. Angewandte Chemie - International Edition, 2015, 54, 12905-12908.	13.8	28
36	Synthesis of substituted tropones by sequential Rh-catalyzed [5+2] cycloaddition and elimination. Tetrahedron, 2015, 71, 5979-5984.	1.9	15

3

#	Article	IF	CITATIONS
37	Rhodium-Catalyzed Stereoselective Intramolecular $[5 + 2]$ Cycloaddition of 3-Acyloxy 1,4-Enyne and Alkene. Organic Letters, 2015, 17, 5128-5131.	4.6	13
38	Rhodium-Catalyzed Intermolecular [5+1] and [5+2] Cycloadditions Using 1,4-Enynes with an Electron-Donating Ester on the 3-Position. Synthesis, 2015, 47, 1076-1084.	2.3	14
39	Divergent de novo synthesis of all eight stereoisomers of 2,3,6-trideoxyhexopyranosides and their oligomers. Chemical Communications, 2015, 51, 17475-17478.	4.1	35
40	Synthesis of naturally occurring tropones and tropolones. Tetrahedron, 2014, 70, 9281-9305.	1.9	87
41	Platinum-Catalyzed Tandem Indole Annulation/Arylation for the Synthesis of Diindolylmethanes and Indolo[3,2- <i>b</i>)carbazoles. Organic Letters, 2013, 15, 4162-4165.	4.6	49
42	Transfer of Chirality in the Rhodiumâ€Catalyzed Intramolecular [5+2] Cycloaddition of 3â€Acyloxyâ€1,4â€enynes (ACEs) and Alkynes: Synthesis of Enantioenriched Bicyclo[5.3.0]decatrienes. Angewandte Chemie - International Edition, 2013, 52, 13601-13605.	13.8	51
43	Rhodium-Catalyzed Tandem Annulation and (5 + 1) Cycloaddition: 3-Hydroxy-1,4-enyne as the 5-Carbon Component. Journal of the American Chemical Society, 2013, 135, 16797-16800.	13.7	90
44	Rhodium―and Platinumâ€Catalyzed [4+3] Cycloaddition with Concomitant Indole Annulation: Synthesis of Cyclohepta[<i>b</i>]indoles. Angewandte Chemie - International Edition, 2013, 52, 3237-3240.	13.8	105
45	Generation of Rhodium(I) Carbenes from Ynamides and Their Reactions with Alkynes and Alkenes. Journal of the American Chemical Society, 2013, 135, 8201-8204.	13.7	132
46	\hat{l}_{\pm} -Aryl-Substituted Allenamides in an Imino-Nazarov Cyclization Cascade Catalyzed by Au(I). Organic Letters, 2012, 14, 5736-5739.	4.6	71
47	Copperâ€Catalyzed Fourâ€Component Reaction of Baylis–Hillman Adducts with Alkynes, Sulfonyl Azides and Alcohols. Advanced Synthesis and Catalysis, 2010, 352, 2432-2436.	4.3	23
48	Efficient access to polysubstituted amidines, benzimidazoles and pyrimidines from amides. Tetrahedron, 2010, 66, 1208-1214.	1.9	30
49	A Facile Route to \hat{I}^3 -Nitro Imidates via Four-Component Reaction of Alkynes with Sulfonyl Azides, Alcohols, and Nitroolefins. Journal of Organic Chemistry, 2010, 75, 3481-3483.	3.2	62
50	Copperâ€Catalyzed Oneâ€Pot Synthesis of 2â€Alkylideneâ€1,2,3,4―tetrahydropyrimidines. Advanced Synthesis Catalysis, 2009, 351, 1768-1772.	and 4.3	69
51	Three-Component Asymmetric Polymerization toward Chiral Polymer. CCS Chemistry, 0, , 1-14.	7.8	10