Jay D Humphrey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7665348/publications.pdf Version: 2024-02-01

		15495	21521
272	17,170	65	114
papers	citations	h-index	g-index
281	281	281	11369
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Reduced Smooth Muscle Contractile Capacity Facilitates Maladaptive Arterial Remodeling. Journal of Biomechanical Engineering, 2022, 144, .	0.6	3
2	Comment on "Tensional homeostasis at different length scales―by D. Stamenović and M. L. Smith, <i>Soft Matter</i> , 2021, 17 , 10274–10285, DOI: 10.1039/D0SM01911A. Soft Matter, 2022, 18, 675	-679.	0
3	Tissue engineered vascular grafts transform into autologous neovessels capable of native function and growth. Communications Medicine, 2022, 2, .	1.9	18
4	Critical Pressure of Intramural Delamination in Aortic Dissection. Annals of Biomedical Engineering, 2022, 50, 183-194.	1.3	10
5	Understanding Pulmonary Autograft Remodeling After the Ross Procedure: Stick to the Facts. Frontiers in Cardiovascular Medicine, 2022, 9, 829120.	1.1	6
6	mTOR inhibition prevents angiotensin II–induced aortic rupture and pseudoaneurysm but promotes dissection in Apoe-deficient mice. JCI Insight, 2022, 7, .	2.3	8
7	Simulating progressive intramural damage leading to aortic dissection using DeepONet: an operator–regression neural network. Journal of the Royal Society Interface, 2022, 19, 20210670.	1.5	21
8	In vivo development of tissue engineered vascular grafts: a fluid-solid-growth model. Biomechanics and Modeling in Mechanobiology, 2022, 21, 827-848.	1.4	5
9	Compromised Cardiopulmonary Function in Fibulin-5 Deficient Mice. Journal of Biomechanical Engineering, 2022, 144, .	0.6	0
10	CineCT platform for in vivo and ex vivo measurement of 3D high resolution Lagrangian strains in the left ventricle following myocardial infarction and intramyocardial delivery of theranostic hydrogel. Journal of Molecular and Cellular Cardiology, 2022, 166, 74-90.	0.9	8
11	Animal models and methods to study arterial stiffness. , 2022, , 137-151.		0
12	Predicting and understanding arterial elasticity from key microstructural features by bidirectional deep learning. Acta Biomaterialia, 2022, 147, 63-72.	4.1	9
13	Deletion of matrix metalloproteinase-12 compromises mechanical homeostasis and leads to an aged aortic phenotype in young mice. Journal of Biomechanics, 2022, 141, 111179.	0.9	3
14	Enablers and drivers of vascular remodeling. , 2022, , 277-285.		0
15	Evolving Mural Defects, Dilatation, and Biomechanical Dysfunction in Angiotensin II–Induced Thoracic Aortopathies. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 973-986.	1.1	3
16	Fibronectin–Integrin α5 Signaling in Vascular Complications of Type 1 Diabetes. Diabetes, 2022, 71, 2020-2033.	0.3	4
17	Mechanisms of Vascular Remodeling in Hypertension. American Journal of Hypertension, 2021, 34, 432-441.	1.0	54
18	Developmental origins of mechanical homeostasis in the aorta. Developmental Dynamics, 2021, 250, 629-639.	0.8	28

#	Article	IF	CITATIONS
19	Electrospun Tissue-Engineered Arterial Graft Thickness Affects Long-Term Composition and Mechanics. Tissue Engineering - Part A, 2021, 27, 593-603.	1.6	11
20	From Transcript to Tissue: Multiscale Modeling from Cell Signaling to Matrix Remodeling. Annals of Biomedical Engineering, 2021, 49, 1701-1715.	1.3	26
21	Differential propensity of dissection along the aorta. Biomechanics and Modeling in Mechanobiology, 2021, 20, 895-907.	1.4	13
22	Complementary roles of mechanotransduction and inflammation in vascular homeostasis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 477, 20200622.	1.0	8
23	Integrating blood cell mechanics, platelet adhesive dynamics and coagulation cascade for modelling thrombus formation in normal and diabetic blood. Journal of the Royal Society Interface, 2021, 18, 20200834.	1.5	44
24	Mechanical homeostasis in tissue equivalents: a review. Biomechanics and Modeling in Mechanobiology, 2021, 20, 833-850.	1.4	36
25	Non-invasive inference of thrombus material properties with physics-informed neural networks. Computer Methods in Applied Mechanics and Engineering, 2021, 375, 113603.	3.4	82
26	Differential biomechanical responses of elastic and muscular arteries to angiotensin II-induced hypertension. Journal of Biomechanics, 2021, 119, 110297.	0.9	13
27	Adventitial remodeling protects against aortic rupture following late smooth muscle-specific disruption of TGFβ signaling. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 116, 104264.	1.5	13
28	Arterial Stiffness and Cardiovascular Risk in Hypertension. Circulation Research, 2021, 128, 864-886.	2.0	213
29	Evolving structure-function relations during aortic maturation and aging revealed by multiphoton microscopy. Mechanisms of Ageing and Development, 2021, 196, 111471.	2.2	22
30	A computational framework for modeling cell–matrix interactions in soft biological tissues. Biomechanics and Modeling in Mechanobiology, 2021, 20, 1851-1870.	1.4	23
31	Quantitative not qualitative histology differentiates aneurysmal from nondilated ascending aortas and reveals a net gain of medial components. Scientific Reports, 2021, 11, 13185.	1.6	12
32	Biomechanical consequences of compromised elastic fiber integrity and matrix cross-linking on abdominal aortic aneurysmal enlargement. Acta Biomaterialia, 2021, 134, 422-434.	4.1	21
33	Hemodynamic performance of tissue-engineered vascular grafts in Fontan patients. Npj Regenerative Medicine, 2021, 6, 38.	2.5	23
34	What do cells regulate in soft tissues on short time scales?. Acta Biomaterialia, 2021, 134, 348-356.	4.1	5
35	Multi-view Digital Image Correlation Systems for In Vitro Testing of Arteries from Mice to Humans. Experimental Mechanics, 2021, 61, 1455-1472.	1.1	9
36	Excessive adventitial stress drives inflammation-mediated fibrosis in hypertensive aortic remodelling in mice. Journal of the Royal Society Interface, 2021, 18, 20210336.	1.5	24

#	Article	IF	CITATIONS
37	Vascular Mechanobiology: Homeostasis, Adaptation, and Disease. Annual Review of Biomedical Engineering, 2021, 23, 1-27.	5.7	75
38	Mechanisms of Hypoxia-Induced Pulmonary Arterial Stiffening in Mice Revealed by a Functional Genetics Assay of Structural, Functional, and Transcriptomic Data. Frontiers in Physiology, 2021, 12, 726253.	1.3	5
39	Inhibition of HIPK2 Alleviates Thoracic Aortic Disease in Mice With Progressively Severe Marfan Syndrome. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2483-2493.	1.1	4
40	Constrained Mixture Models of Soft Tissue Growth and Remodeling – Twenty Years After. Journal of Elasticity, 2021, 145, 49-75.	0.9	38
41	Uncertainty quantification in subjectâ€specific estimation of local vessel mechanical properties. International Journal for Numerical Methods in Biomedical Engineering, 2021, 37, e3535.	1.0	12
42	Comparative Study of Human and Murine Aortic Biomechanics and Hemodynamics in Vascular Aging. Frontiers in Physiology, 2021, 12, 746796.	1.3	10
43	Roles of mTOR in thoracic aortopathy understood by complex intracellular signaling interactions. PLoS Computational Biology, 2021, 17, e1009683.	1.5	16
44	Progressive Microstructural Deterioration Dictates Evolving Biomechanical Dysfunction in the Marfan Aorta. Frontiers in Cardiovascular Medicine, 2021, 8, 800730.	1.1	14
45	Co-localization of microstructural damage and excessive mechanical strain at aortic branches in angiotensin-II-infused mice. Biomechanics and Modeling in Mechanobiology, 2020, 19, 81-97.	1.4	11
46	Biomechanics and Mechanobiology of Extracellular Matrix Remodeling. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2020, , 1-20.	0.7	0
47	Venous Mechanical Properties After Arteriovenous Fistulae in Mice. Journal of Surgical Research, 2020, 248, 129-136.	0.8	0
48	Effects of Braiding Parameters on Tissue Engineered Vascular Graft Development. Advanced Healthcare Materials, 2020, 9, e2001093.	3.9	18
49	A nonlinear rotation-free shell formulation with prestressing for vascular biomechanics. Scientific Reports, 2020, 10, 17528.	1.6	11
50	Vascular adaptation in the presence of external support - A modeling study. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 110, 103943.	1.5	10
51	Paradoxical aortic stiffening and subsequent cardiac dysfunction in Hutchinson–Gilford progeria syndrome. Journal of the Royal Society Interface, 2020, 17, 20200066.	1.5	21
52	Cell signaling model for arterial mechanobiology. PLoS Computational Biology, 2020, 16, e1008161.	1.5	39
53	Artery to vein configuration of arteriovenous fistula improves hemodynamics to increase maturation and patency. Science Translational Medicine, 2020, 12, .	5.8	15
54	Aortic remodeling is modest and sex-independent in mice when hypertension is superimposed on aging. Journal of Hypertension, 2020, 38, 1312-1321.	0.3	21

#	Article	IF	CITATIONS
55	Fast, rate-independent, finite element implementation of a 3D constrained mixture model of soft tissue growth and remodeling. Computer Methods in Applied Mechanics and Engineering, 2020, 368, 113156.	3.4	17
56	Spontaneous reversal of stenosis in tissue-engineered vascular grafts. Science Translational Medicine, 2020, 12, .	5.8	81
57	Multimodality Imaging-Based Characterization of Regional Material Properties in a Murine Model of Aortic Dissection. Scientific Reports, 2020, 10, 9244.	1.6	20
58	A computational bio-chemo-mechanical model of in vivo tissue-engineered vascular graft development. Integrative Biology (United Kingdom), 2020, 12, 47-63.	0.6	19
59	A three-dimensional phase-field model for multiscale modeling of thrombus biomechanics in blood vessels. PLoS Computational Biology, 2020, 16, e1007709.	1.5	51
60	Smooth Muscle Cell Reprogramming in Aortic Aneurysms. Cell Stem Cell, 2020, 26, 542-557.e11.	5.2	114
61	Computer-Controlled Biaxial Bioreactor for Investigating Cell-Mediated Homeostasis in Tissue Equivalents. Journal of Biomechanical Engineering, 2020, 142, .	0.6	14
62	Mechanics-driven mechanobiological mechanisms of arterial tortuosity. Science Advances, 2020, 6, .	4.7	24
63	Chronic mTOR activation induces a degradative smooth muscle cell phenotype. Journal of Clinical Investigation, 2020, 130, 1233-1251.	3.9	59
64	Numerical knockouts–In silico assessment of factors predisposing to thoracic aortic aneurysms. PLoS Computational Biology, 2020, 16, e1008273.	1.5	19
65	P.58 Genetic Background Dictates Aortic Fibrosis in Hypertensive Mice. Artery Research, 2020, 26, S81-S82.	0.3	1
66	Vascular dimorphism ensured by regulated proteoglycan dynamics favors rapid umbilical artery closure at birth. ELife, 2020, 9, .	2.8	16
67	Title is missing!. , 2020, 16, e1007709.		0
68	Title is missing!. , 2020, 16, e1007709.		0
69	Title is missing!. , 2020, 16, e1007709.		0
70	Title is missing!. , 2020, 16, e1007709.		0
71	Cell signaling model for arterial mechanobiology. , 2020, 16, e1008161.		0
72	Cell signaling model for arterial mechanobiology. , 2020, 16, e1008161.		0

5

#	Article	IF	CITATIONS
73	Cell signaling model for arterial mechanobiology. , 2020, 16, e1008161.		0
74	Cell signaling model for arterial mechanobiology. , 2020, 16, e1008161.		0
75	Cell signaling model for arterial mechanobiology. , 2020, 16, e1008161.		0
76	Cell signaling model for arterial mechanobiology. , 2020, 16, e1008161.		0
77	Cell signaling model for arterial mechanobiology. , 2020, 16, e1008161.		0
78	Cell signaling model for arterial mechanobiology. , 2020, 16, e1008161.		0
79	Growth and remodelling of living tissues: perspectives, challenges and opportunities. Journal of the Royal Society Interface, 2019, 16, 20190233.	1.5	142
80	Optimization of Tissue-Engineered Vascular Graft Design Using Computational Modeling. Tissue Engineering - Part C: Methods, 2019, 25, 561-570.	1.1	47
81	Modeling lamellar disruption within the aortic wall using a particle-based approach. Scientific Reports, 2019, 9, 15320.	1.6	22
82	Computational modeling predicts immuno-mechanical mechanisms of maladaptive aortic remodeling in hypertension. International Journal of Engineering Science, 2019, 141, 35-46.	2.7	24
83	Differential outcomes of venous and arterial tissue engineered vascular grafts highlight the importance of coupling long-term implantation studies with computational modeling. Acta Biomaterialia, 2019, 94, 183-194.	4.1	34
84	Arterial Stiffness: Different Metrics, Different Meanings. Journal of Biomechanical Engineering, 2019, 141, .	0.6	33
85	Sex-dependent differences in central artery haemodynamics in normal and fibulin-5 deficient mice: implications for ageing. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 475, 20180076.	1.0	20
86	Biomechanical characterization of murine pulmonary arteries. Journal of Biomechanics, 2019, 84, 18-26.	0.9	21
87	Mechanobiological stability of biological soft tissues. Journal of the Mechanics and Physics of Solids, 2019, 125, 298-325.	2.3	27
88	Maladaptive aortic remodeling in hypertension associates with dysfunctional smooth muscle contractility. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H265-H278.	1.5	27
89	Central artery stiffness and thoracic aortopathy. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H169-H182.	1.5	44
90	Fundamental Roles of Axial Stretch in Isometric and Isobaric Evaluations of Vascular Contractility. Journal of Biomechanical Engineering, 2019, 141, .	0.6	19

#	Article	IF	CITATIONS
91	Absence of LTBP-3 attenuates the aneurysmal phenotype but not spinal effects on the aorta in Marfan syndrome. Biomechanics and Modeling in Mechanobiology, 2019, 18, 261-273.	1.4	19
92	Local variations in material and structural properties characterize murine thoracic aortic aneurysm mechanics. Biomechanics and Modeling in Mechanobiology, 2019, 18, 203-218.	1.4	52
93	Systems pharmacology–based integration of human and mouse data for drug repurposing to treat thoracic aneurysms. JCI Insight, 2019, 4, .	2.3	21
94	A mechanobiologically equilibrated constrained mixture model for growth and remodeling of soft tissues. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2018, 98, 2048-2071.	0.9	33
95	Data-driven Modeling of Hemodynamics and its Role on Thrombus Size and Shape in Aortic Dissections. Scientific Reports, 2018, 8, 2515.	1.6	23
96	Oversized Biodegradable Arterial Grafts Promote Enhanced Neointimal Tissue Formation. Tissue Engineering - Part A, 2018, 24, 1251-1261.	1.6	12
97	Journal of Biomechanical Engineering: Legacy Paper 2017. Journal of Biomechanical Engineering, 2018, 140, .	0.6	О
98	Particle-based computational modelling of arterial disease. Journal of the Royal Society Interface, 2018, 15, 20180616.	1.5	20
99	Combining in vivo and in vitro biomechanical data reveals key roles of perivascular tethering in central artery function. PLoS ONE, 2018, 13, e0201379.	1.1	39
100	Regional Heterogeneity in the Regulation of Vasoconstriction in Arteries and Its Role in Vascular Mechanics. Advances in Experimental Medicine and Biology, 2018, 1097, 105-128.	0.8	9
101	Strongly Coupled Morphological Features of Aortic Aneurysms Drive Intraluminal Thrombus. Scientific Reports, 2018, 8, 13273.	1.6	18
102	Compromised mechanical homeostasis in arterial aging and associated cardiovascular consequences. Biomechanics and Modeling in Mechanobiology, 2018, 17, 1281-1295.	1.4	47
103	Critical roles of time-scales in soft tissue growth and remodeling. APL Bioengineering, 2018, 2, 026108.	3.3	26
104	Immuno-driven and Mechano-mediated Neotissue Formation in Tissue Engineered Vascular Grafts. Annals of Biomedical Engineering, 2018, 46, 1938-1950.	1.3	51
105	Vascular mechanobiology, immunobiology, and arterial growth and remodeling. , 2018, , 215-248.		6
106	Modeling mechano-driven and immuno-mediated aortic maladaptation in hypertension. Biomechanics and Modeling in Mechanobiology, 2018, 17, 1497-1511.	1.4	42
107	LNK deficiency promotes acute aortic dissection and rupture. JCI Insight, 2018, 3, .	2.3	15
108	Loss of Lymphocyte Adaptor Protein LNK Predisposes to Acute Aortic Dissection. FASEB Journal, 2018, 32, .	0.2	0

#	Article	IF	CITATIONS
109	Growth and remodeling of load-bearing biological soft tissues. Meccanica, 2017, 52, 645-664.	1.2	119
110	Biomechanical Phenotyping of the Murine Aorta: What Is the Best Control?. Journal of Biomechanical Engineering, 2017, 139, .	0.6	10
111	Multi-Modality Imaging Enables Detailed Hemodynamic Simulations in Dissecting Aneurysms in Mice. IEEE Transactions on Medical Imaging, 2017, 36, 1297-1305.	5.4	36
112	Deficient Circumferential Growth Is the Primary Determinant of Aortic Obstruction Attributable to Partial Elastin Deficiency. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 930-941.	1.1	45
113	Comparison of 10 murine models reveals a distinct biomechanical phenotype in thoracic aortic aneurysms. Journal of the Royal Society Interface, 2017, 14, 20161036.	1.5	92
114	An augmented iterative method for identifying a stress-free reference configuration in image-based biomechanical modeling. Journal of Biomechanics, 2017, 58, 227-231.	0.9	35
115	Potential biomechanical roles of risk factors in the evolution of thrombusâ€laden abdominal aortic aneurysms. International Journal for Numerical Methods in Biomedical Engineering, 2017, 33, e2893.	1.0	13
116	Correlation of Wall Microstructure and Heterogeneous Distributions of Strain in Evolving Murine Abdominal Aortic Aneurysms. Cardiovascular Engineering and Technology, 2017, 8, 193-204.	0.7	8
117	Gradual loading ameliorates maladaptation in computational simulations of vein graft growth and remodelling. Journal of the Royal Society Interface, 2017, 14, 20160995.	1.5	34
118	Aging, Smooth Muscle Vitality, and Aortic Integrity. Circulation Research, 2017, 120, 1849-1851.	2.0	21
119	A hidden structural vulnerability in the thrombospondin-2 deficient aorta increases the propensity to intramural delamination. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 71, 397-406.	1.5	18
120	A Computational Model of the Biochemomechanics of an Evolving Occlusive Thrombus. Journal of Elasticity, 2017, 129, 125-144.	0.9	23
121	Stress Analysis-Driven Design of Bilayered Scaffolds for Tissue-Engineered Vascular Grafts. Journal of Biomechanical Engineering, 2017, 139, .	0.6	16
122	mTOR (Mechanistic Target of Rapamycin) Inhibition Decreases Mechanosignaling, Collagen Accumulation, and Stiffening of the Thoracic Aorta in Elastin-Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1657-1666.	1.1	26
123	Multiscale and Multiaxial Mechanics of Vascular Smooth Muscle. Biophysical Journal, 2017, 113, 714-727.	0.2	22
124	Differential cell-matrix mechanoadaptations and inflammation drive regional propensities to aortic fibrosis, aneurysm or dissection in hypertension. Journal of the Royal Society Interface, 2017, 14, 20170327.	1.5	95
125	Accommodation of the human lens capsule using a finite element model based on nonlinear regionally anisotropic biomembranes. Computer Methods in Biomechanics and Biomedical Engineering, 2017, 20, 302-307.	0.9	20
126	Modeling Soft Tissue Damage and Failure Using a Combined Particle/Continuum Approach. Biomechanics and Modeling in Mechanobiology, 2017, 16, 249-261.	1.4	35

#	Article	IF	CITATIONS
127	Hemodynamicsâ€driven deposition of intraluminal thrombus in abdominal aortic aneurysms. International Journal for Numerical Methods in Biomedical Engineering, 2017, 33, e2828.	1.0	20
128	Effects of age-associated regional changes in aortic stiffness on human hemodynamics revealed by computational modeling. PLoS ONE, 2017, 12, e0173177.	1.1	59
129	A General Shear-Dependent Model for Thrombus Formation. PLoS Computational Biology, 2017, 13, e1005291.	1.5	104
130	Reduced Biaxial Contractility in the Descending Thoracic Aorta of Fibulin-5 Deficient Mice. Journal of Biomechanical Engineering, 2016, 138, 051008.	0.6	34
131	Novel Methodology for Characterizing Regional Variations in the Material Properties of Murine Aortas. Journal of Biomechanical Engineering, 2016, 138, .	0.6	77
132	A homogenized constrained mixture (and mechanical analog) model for growth and remodeling of soft tissue. Biomechanics and Modeling in Mechanobiology, 2016, 15, 1389-1403.	1.4	103
133	Loss of elastic fiber integrity compromises common carotid artery function: Implications for vascular aging. Artery Research, 2016, 14, 41.	0.3	28
134	Biaxial Stretch Improves Elastic Fiber Maturation, Collagen Arrangement, and Mechanical Properties in Engineered Arteries. Tissue Engineering - Part C: Methods, 2016, 22, 524-533.	1.1	63
135	A discrete mesoscopic particle model of the mechanics of a multi-constituent arterial wall. Journal of the Royal Society Interface, 2016, 13, 20150964.	1.5	11
136	A microstructurally inspired damage model for early venous thrombus. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 55, 12-20.	1.5	33
137	Pharmacologically Improved Contractility Protects Against Aortic Dissection in Mice With Disrupted Transforming Growth Factor-β Signaling Despite Compromised Extracellular Matrix Properties. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 919-927.	1.1	65
138	Excessive Adventitial Remodeling Leads to Early Aortic Maladaptation in Angiotensin-Induced Hypertension. Hypertension, 2016, 67, 890-896.	1.3	93
139	Central Artery Stiffness in Hypertension and Aging. Circulation Research, 2016, 118, 379-381.	2.0	137
140	Long-Term Functional Efficacy of a Novel Electrospun Poly(Glycerol Sebacate)-Based Arterial Graft in Mice. Annals of Biomedical Engineering, 2016, 44, 2402-2416.	1.3	71
141	Differential ascending and descending aortic mechanics parallel aneurysmal propensity in a mouse model of Marfan syndrome. Journal of Biomechanics, 2016, 49, 2383-2389.	0.9	37
142	Origin of Matrix-Producing Cells That Contribute to Aortic Fibrosis in Hypertension. Hypertension, 2016, 67, 461-468.	1.3	65
143	Adaptation of active tone in the mouse descending thoracic aorta under acute changes in loading. Biomechanics and Modeling in Mechanobiology, 2016, 15, 579-592.	1.4	21
144	Histological and biomechanical changes in aÂmouse model of venous thrombus remodeling. Biorheology, 2015, 52, 235-245.	1.2	32

#	Article	IF	CITATIONS
145	Vascular remodeling is governed by a VEGFR3-dependent fluid shear stress set point. ELife, 2015, 4, .	2.8	177
146	Biomechanical Diversity Despite Mechanobiological Stability in Tissue Engineered Vascular Grafts Two Years Post-Implantation. Tissue Engineering - Part A, 2015, 21, 1529-1538.	1.6	47
147	Design and Use of a Novel Bioreactor for Regeneration of Biaxially Stretched Tissue-Engineered Vessels. Tissue Engineering - Part C: Methods, 2015, 21, 841-851.	1.1	29
148	An Experimental–Computational Study of Catheter Induced Alterations in Pulse Wave Velocity in Anesthetized Mice. Annals of Biomedical Engineering, 2015, 43, 1555-1570.	1.3	22
149	Distinct macrophage phenotype and collagen organization within the intraluminal thrombus of abdominal aortic aneurysm. Journal of Vascular Surgery, 2015, 62, 585-593.	0.6	24
150	An Introduction to Biomechanics. , 2015, , .		14
151	Decreased Elastic Energy Storage, Not Increased Material Stiffness, Characterizes Central Artery Dysfunction in Fibulin-5 Deficiency Independent of Sex. Journal of Biomechanical Engineering, 2015, 137,	0.6	74
152	A Computational Model of Biochemomechanical Effects of Intraluminal Thrombus on the Enlargement of Abdominal Aortic Aneurysms. Annals of Biomedical Engineering, 2015, 43, 2852-2867.	1.3	26
153	Computational Simulation of the Adaptive Capacity of Vein Grafts in Response to Increased Pressure. Journal of Biomechanical Engineering, 2015, 137, .	0.6	29
154	Multimodal optical measurementin vitroof surface deformations and wall thickness of the pressurized aortic arch. Journal of Biomedical Optics, 2015, 20, 046005.	1.4	12
155	Multiscale modelling in biomechanics. Interface Focus, 2015, 5, 20150003.	1.5	5
156	Role of Mechanotransduction in Vascular Biology. Circulation Research, 2015, 116, 1448-1461.	2.0	299
157	Regional identification of mechanical properties in arteries. Computer Methods in Biomechanics and Biomedical Engineering, 2015, 18, 1874-1875.	0.9	4
158	<mml:math <br="" altimg="si0033.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:mi mathvariant="italic">Myh</mml:mi><mml:msup><mml:mrow><mml:mi mathvariant="italic">11</mml:mi </mml:mrow><mml:mrow><mml:mi>R</mml:mi>247 mutations increase thoracic aorta vulnerability to intramural damage despite a general biomechanical</mml:mrow></mml:msup></mml:math>	<mnol:eni>C</mnol:eni>	C <m< td=""></m<>
159	adaptivity. Journal of Biomechanics, 2015, 48, 113-121. A hypothesis-driven parametric study of effects of polymeric scaffold properties on tissue engineered neovessel formation. Acta Biomaterialia, 2015, 11, 283-294.	4.1	58
160	Tgfbr2 disruption in postnatal smooth muscle impairs aortic wall homeostasis. Journal of Clinical Investigation, 2014, 124, 755-767.	3.9	223
161	A haemodynamic predictor of intraluminal thrombus formation in abdominal aortic aneurysms. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 470, 20140163.	1.0	112
162	Tissue Transglutaminase, Not Lysyl Oxidase, Dominates Early Calcium-Dependent Remodeling of Fibroblast-Populated Collagen Lattices. Cells Tissues Organs, 2014, 200, 104-117.	1.3	14

#	Article	IF	CITATIONS
163	Syndecan 4 is required for endothelial alignment in flow and atheroprotective signaling. Proceedings of the United States of America, 2014, 111, 17308-17313.	3.3	133
164	Digital image correlation-based point-wise inverse characterization of heterogeneous material properties of gallbladder <i>in vitro</i> . Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 470, 20140152.	1.0	34
165	Computational model of the in vivo development of a tissue engineered vein from an implanted polymeric construct. Journal of Biomechanics, 2014, 47, 2080-2087.	0.9	43
166	Biomechanical roles of medial pooling of glycosaminoglycans in thoracic aortic dissection. Biomechanics and Modeling in Mechanobiology, 2014, 13, 13-25.	1.4	93
167	A Microstructurally Motivated Model of Arterial Wall Mechanics with Mechanobiological Implications. Annals of Biomedical Engineering, 2014, 42, 488-502.	1.3	141
168	Dysfunctional Mechanosensing in Aneurysms. Science, 2014, 344, 477-479.	6.0	133
169	Quantification of regional differences in aortic stiffness in the aging human. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 29, 618-634.	1.5	106
170	Beyond Burst Pressure: Initial Evaluation of the Natural History of the Biaxial Mechanical Properties of Tissue-Engineered Vascular Grafts in the Venous Circulation Using a Murine Model. Tissue Engineering - Part A, 2014, 20, 346-355.	1.6	38
171	Mechanotransduction and extracellular matrix homeostasis. Nature Reviews Molecular Cell Biology, 2014, 15, 802-812.	16.1	1,492
172	Evolving anisotropy and degree of elastolytic insult in abdominal aortic aneurysms: Potential clinical relevance?. Journal of Biomechanics, 2014, 47, 2995-3002.	0.9	11
173	Mechanobiological stability: a new paradigm to understand the enlargement of aneurysms?. Journal of the Royal Society Interface, 2014, 11, 20140680.	1.5	55
174	Vascular homeostasis and the concept of mechanobiological stability. International Journal of Engineering Science, 2014, 85, 203-223.	2.7	74
175	Consistent Biomechanical Phenotyping of Common Carotid Arteries from Seven Genetic, Pharmacological, and Surgical Mouse Models. Annals of Biomedical Engineering, 2014, 42, 1207-1223.	1.3	43
176	Characterization of evolving biomechanical properties of tissue engineered vascular grafts in the arterial circulation. Journal of Biomechanics, 2014, 47, 2070-2079.	0.9	39
177	Computational modelling suggests good, bad and ugly roles of glycosaminoglycans in arterial wall mechanics and mechanobiology. Journal of the Royal Society Interface, 2014, 11, 20140397.	1.5	66
178	Biochemomechanics of Intraluminal Thrombus in Abdominal Aortic Aneurysms. Journal of Biomechanical Engineering, 2013, 135, 021011.	0.6	85
179	An improved panoramic digital image correlation method for vascular strain analysis and material characterization. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 27, 132-142.	1.5	49
180	Biomechanical Phenotyping of Central Arteries in Health and Disease: Advantages of and Methods for Murine Models. Annals of Biomedical Engineering, 2013, 41, 1311-1330.	1.3	149

#	Article	IF	CITATIONS
181	A finite elementâ€based constrained mixture implementation for arterial growth, remodeling, and adaptation: Theory and numerical verification. International Journal for Numerical Methods in Biomedical Engineering, 2013, 29, 822-849.	1.0	74
182	Multi-scale computational model of three-dimensional hemodynamics within a deformable full-body arterial network. Journal of Computational Physics, 2013, 244, 22-40.	1.9	96
183	Biaxial mechanical properties of the inferior vena cava in C57BL/6 and CB-17 SCID/bg mice. Journal of Biomechanics, 2013, 46, 2277-2282.	0.9	26
184	An efficient framework for optimization and parameter sensitivity analysis in arterial growth and remodeling computations. Computer Methods in Applied Mechanics and Engineering, 2013, 256, 200-210.	3.4	27
185	Parametric study of effects of collagen turnover on the natural history of abdominal aortic aneurysms. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, 469, 20120556.	1.0	59
186	Possible Mechanical Roles of Glycosaminoglycans in Thoracic Aortic Dissection and Associations with Dysregulated Transforming Growth Factor-β. Journal of Vascular Research, 2013, 50, 1-10.	0.6	111
187	Inhibition of MicroRNA-29 Enhances Elastin Levels in Cells Haploinsufficient for Elastin and in Bioengineered Vessels—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 756-759.	1.1	94
188	Importance of initial aortic properties on the evolving regional anisotropy, stiffness and wall thickness of human abdominal aortic aneurysms. Journal of the Royal Society Interface, 2012, 9, 2047-2058.	1.5	94
189	Continuum Mixture Models of Biological Growth and Remodeling: Past Successes and Future Opportunities. Annual Review of Biomedical Engineering, 2012, 14, 97-111.	5.7	63
190	Mechanics, mechanobiology, and modeling of human abdominal aorta and aneurysms. Journal of Biomechanics, 2012, 45, 805-814.	0.9	257
191	Characterization of the Natural History of Extracellular Matrix Production in Tissue-Engineered Vascular Grafts during Neovessel Formation. Cells Tissues Organs, 2012, 195, 60-72.	1.3	64
192	Remodeling of Intramural Thrombus and Collagen in an Ang-II Infusion ApoEâ^'/â^' Model of Dissecting Aortic Aneurysms. Thrombosis Research, 2012, 130, e139-e146.	0.8	39
193	Mechanical restrictions on biological responses by adherent cells within collagen gels. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 14, 216-226.	1.5	27
194	Disparate changes in the mechanical properties of murine carotid arteries and aorta in response to chronic infusion of angiotensin-II. International Journal of Advances in Engineering Sciences and Applied Mathematics, 2012, 4, 228-240.	0.7	25
195	Regional Finite Strains in an Angiotensin-II Induced Mouse Model of Dissecting Abdominal Aortic Aneurysms. Cardiovascular Engineering and Technology, 2012, 3, 194-202.	0.7	15
196	A multilayered wall model of arterial growth and remodeling. Mechanics of Materials, 2012, 44, 110-119.	1.7	40
197	Panoramic stereo DIC-based strain measurement on submerged objects. Conference Proceedings of the Society for Experimental Mechanics, 2011, , 257-263.	0.3	1
198	Evolving biaxial mechanical properties of mouse carotid arteries in hypertension. Journal of Biomechanics, 2011, 44, 2532-2537.	0.9	28

#	Article	IF	CITATIONS
199	A Multi-Layered Computational Model of Coupled Elastin Degradation, Vasoactive Dysfunction, and Collagenous Stiffening in Aortic Aging. Annals of Biomedical Engineering, 2011, 39, 2027-2045.	1.3	57
200	Ensuring Congruency in Multiscale Modeling: Towards Linking Agent Based and Continuum Biomechanical Models of Arterial Adaptation. Annals of Biomedical Engineering, 2011, 39, 2669-2682.	1.3	36
201	Perspectives on biological growth and remodeling. Journal of the Mechanics and Physics of Solids, 2011, 59, 863-883.	2.3	371
202	On constitutive descriptors of the biaxial mechanical behaviour of human abdominal aorta and aneurysms. Journal of the Royal Society Interface, 2011, 8, 435-450.	1.5	152
203	Mechanical assessment of elastin integrity in fibrillin-1-deficient carotid arteries: implications for Marfan syndrome. Cardiovascular Research, 2011, 92, 287-295.	1.8	119
204	Novel optical system for <i>in vitro</i> quantification of full surface strain fields in small arteries: II. Correction for refraction and illustrative results. Computer Methods in Biomechanics and Biomedical Engineering, 2011, 14, 227-237.	0.9	20
205	Novel optical system for <i>in vitro</i> quantification of full surface strain fields in small arteries: I. Theory and design. Computer Methods in Biomechanics and Biomedical Engineering, 2011, 14, 213-225.	0.9	29
206	A 3-D framework for arterial growth and remodeling in response to altered hemodynamics. International Journal of Engineering Science, 2010, 48, 1357-1372.	2.7	37
207	Time course of carotid artery growth and remodeling in response to altered pulsatility. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H1875-H1883.	1.5	44
208	Enabling tools for engineering collagenous tissues integrating bioreactors, intravital imaging, and biomechanical modeling. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3335-3339.	3.3	72
209	Modelling carotid artery adaptations to dynamic alterations in pressure and flow over the cardiac cycle. Mathematical Medicine and Biology, 2010, 27, 343-371.	0.8	23
210	Characterization of Engineered Tissue Development Under Biaxial Stretch Using Nonlinear Optical Microscopy. Tissue Engineering - Part A, 2009, 15, 1553-1564.	1.6	62
211	VASCULAR MECHANICS, MECHANOBIOLOGY, AND REMODELING. Journal of Mechanics in Medicine and Biology, 2009, 09, 243-257.	0.3	36
212	Origin of axial prestretch and residual stress in arteries. Biomechanics and Modeling in Mechanobiology, 2009, 8, 431-446.	1.4	162
213	Mechanics of Carotid Arteries in a Mouse Model of Marfan Syndrome. Annals of Biomedical Engineering, 2009, 37, 1093-1104.	1.3	76
214	Fundamental role of axial stress in compensatory adaptations by arteries. Journal of Biomechanics, 2009, 42, 1-8.	0.9	235
215	Modeling effects of axial extension on arterial growth and remodeling. Medical and Biological Engineering and Computing, 2009, 47, 979-987.	1.6	22
216	A computational framework for fluid–solid-growth modeling in cardiovascular simulations. Computer Methods in Applied Mechanics and Engineering, 2009, 198, 3583-3602.	3.4	179

#	Article	IF	CITATIONS
217	Parameter Sensitivity Study of a Constrained Mixture Model of Arterial Growth and Remodeling. Journal of Biomechanical Engineering, 2009, 131, 101006.	0.6	45
218	Complementary vasoactivity and matrix remodelling in arterial adaptations to altered flow and pressure. Journal of the Royal Society Interface, 2009, 6, 293-306.	1.5	184
219	Importance of pulsatility in hypertensive carotid artery growth and remodeling. Journal of Hypertension, 2009, 27, 2010-2021.	0.3	74
220	A mathematical model of evolving mechanical properties of intraluminal thrombus. Biorheology, 2009, 46, 509-527.	1.2	30
221	Evaluation of fundamental hypotheses underlying constrained mixture models ofÂarterial growth and remodelling. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 3585-3606.	1.6	86
222	Spatial Patterns of Transforming Growth Factor Beta Signaling in Mgrâ€ / ―Mouse Model of Marfan Syndrome. FASEB Journal, 2009, 23, 774.5.	0.2	0
223	Vascular Adaptation and Mechanical Homeostasis at Tissue, Cellular, and Sub-cellular Levels. Cell Biochemistry and Biophysics, 2008, 50, 53-78.	0.9	346
224	A theoretically-motivated biaxial tissue culture system with intravital microscopy. Biomechanics and Modeling in Mechanobiology, 2008, 7, 323-334.	1.4	31
225	Growth and remodeling in a thick-walled artery model: effects of spatial variations in wall constituents. Biomechanics and Modeling in Mechanobiology, 2008, 7, 245-262.	1.4	137
226	Time-dependent Changes in Smooth Muscle Cell Stiffness and Focal Adhesion Area in Response to Cyclic Equibiaxial Stretch. Annals of Biomedical Engineering, 2008, 36, 369-380.	1.3	59
227	Intracranial and Abdominal Aortic Aneurysms: Similarities, Differences, and Need for a New Class of Computational Models. Annual Review of Biomedical Engineering, 2008, 10, 221-246.	5.7	269
228	Mechanisms of Arterial Remodeling in Hypertension. Hypertension, 2008, 52, 195-200.	1.3	256
229	Biaxial biomechanical adaptations of mouse carotid arteries cultured at altered axial extension. Journal of Biomechanics, 2007, 40, 766-776.	0.9	66
230	Biochemomechanics of Cerebral Vasospasm and its Resolution: I. A New Hypothesis and Theoretical Framework. Annals of Biomedical Engineering, 2007, 35, 1485-1497.	1.3	43
231	Biochemomechanics of Cerebral Vasospasm and its Resolution: II. Constitutive Relations and Model Simulations. Annals of Biomedical Engineering, 2007, 35, 1498-1509.	1.3	82
232	On the Deformation of the Circumflex Coronary Artery During Inflation Tests at Constant Length. Experimental Mechanics, 2006, 46, 647-656.	1.1	12
233	A Theoretical Model of Enlarging Intracranial Fusiform Aneurysms. Journal of Biomechanical Engineering, 2006, 128, 142-149.	0.6	245
234	Effects of a sustained extension on arterial growth and remodeling: a theoretical study. Journal of Biomechanics, 2005, 38, 1255-1261.	0.9	69

#	Article	IF	CITATIONS
235	A bi-plane video-based system for studying the mechanics of arterial bifurcations. Experimental Mechanics, 2005, 45, 377-382.	1.1	11
236	Competition Between Radial Expansion and Thickening in the Enlargement of an Intracranial Saccular Aneurysm. Journal of Elasticity, 2005, 80, 13-31.	0.9	66
237	A new paradigm for graduate research and training in the biomedical sciences and engineering. American Journal of Physiology - Advances in Physiology Education, 2005, 29, 98-102.	0.8	26
238	A Mixture Model of Arterial Growth and Remodeling in Hypertension: Altered Muscle Tone and Tissue Turnover. Journal of Vascular Research, 2004, 41, 352-363.	0.6	140
239	A 2-D Model of Flow-Induced Alterations in the Geometry, Structure, and Properties of Carotid Arteries. Journal of Biomechanical Engineering, 2004, 126, 371-381.	0.6	103
240	A Multiaxial Computer-Controlled Organ Culture and Biomechanical Device for Mouse Carotid Arteries. Journal of Biomechanical Engineering, 2004, 126, 787-795.	0.6	144
241	On atomic force microscopy and the constitutive behavior of living cells. Biomechanics and Modeling in Mechanobiology, 2004, 3, 75-84.	1.4	34
242	A constrained mixture model for arterial adaptations to a sustained step change in blood flow. Biomechanics and Modeling in Mechanobiology, 2003, 2, 109-126.	1.4	148
243	A potential role of smooth muscle tone in early hypertension: a theoretical study. Journal of Biomechanics, 2003, 36, 1595-1601.	0.9	35
244	A Novel Aortic Coarctation Model for Studying Hypertension in the Pig. Journal of Investigative Surgery, 2003, 16, 35-44.	0.6	13
245	A CONSTRAINED MIXTURE MODEL FOR GROWTH AND REMODELING OF SOFT TISSUES. Mathematical Models and Methods in Applied Sciences, 2002, 12, 407-430.	1.7	619
246	Cardiovascular Solid Mechanics. , 2002, , .		765
247	Elastodynamics and Arterial Wall Stress. Annals of Biomedical Engineering, 2002, 30, 509-523.	1.3	161
248	Stress-Modulated Growth, Residual Stress, and Vascular Heterogeneity. Journal of Biomechanical Engineering, 2001, 123, 528-535.	0.6	258
249	Compressive stressâ€relaxation of human atherosclerotic plaque. Journal of Biomedical Materials Research Part B, 2001, 55, 236-241.	3.0	4
250	Stress, Strain, and Mechanotransduction in Cells. Journal of Biomechanical Engineering, 2001, 123, 638-641.	0.6	121
251	A Device for Evaluating the Multiaxial Finite Strain Thermomechanical Behavior of Elastomers and Soft Tissues. Journal of Applied Mechanics, Transactions ASME, 2000, 67, 465-471.	1.1	10
252	Effects of Heat-Induced Damage on the Radial Component of Thermal Diffusivity of Bovine Aorta. Journal of Biomechanical Engineering, 2000, 122, 283-286.	0.6	14

#	Article	IF	CITATIONS
253	Matrix Protein Structural Analysis of Brain Aneurysms by Polarizing Microscopy. Microscopy and Microanalysis, 2000, 6, 544-545.	0.2	0
254	An Evaluation of Pseudoelastic Descriptors Used in Arterial Mechanics. Journal of Biomechanical Engineering, 1999, 121, 259-262.	0.6	63
255	Remodeling of a Collagenous Tissue at Fixed Lengths. Journal of Biomechanical Engineering, 1999, 121, 591-597.	0.6	98
256	Measurement of Thermal Diffusivity of Bovine Aorta Subject to Finite Deformationa. Annals of the New York Academy of Sciences, 1998, 858, 88-97.	1.8	3
257	Computer Methods in Membrane Biomechanics. Computer Methods in Biomechanics and Biomedical Engineering, 1998, 1, 171-210.	0.9	57
258	The use of Laplace's equation in aneurysm mechanics. Neurological Research, 1996, 18, 204-208.	0.6	31
259	Influence of size, shape and properties on the mechanics of axisymmetric saccular aneurysms. Journal of Biomechanics, 1996, 29, 1015-1022.	0.9	116
260	Mechanics of the arterial wall: review and directions. Critical Reviews in Biomedical Engineering, 1995, 23, 1-162.	0.5	44
261	Computer-aided vascular experimentation: A new electromechanical test system. Annals of Biomedical Engineering, 1993, 21, 33-43.	1.3	62
262	A Constitutive Theory for Biomembranes: Application to Epicardial Mechanics. Journal of Biomechanical Engineering, 1992, 114, 461-466.	0.6	70
263	Finite extension and torsion of papillary muscles: A theoretical framework. Journal of Biomechanics, 1992, 25, 541-547.	0.9	32
264	Biaxial mechanical behavior of excised ventricular epicardium. American Journal of Physiology - Heart and Circulatory Physiology, 1990, 259, H101-H108.	1.5	47
265	Determination of a Constitutive Relation for Passive Myocardium: I. A New Functional Form. Journal of Biomechanical Engineering, 1990, 112, 333-339.	0.6	249
266	Determination of a Constitutive Relation for Passive Myocardium: II.—Parameter Estimation. Journal of Biomechanical Engineering, 1990, 112, 340-346.	0.6	239
267	A theoretically-based experimental approach for identifying vascular constitutive relations. Biorheology, 1989, 26, 687-702.	1.2	22
268	Constitutive relations and finite deformations of passive cardiac tissue II: stress analysis in the left ventricle Circulation Research, 1989, 65, 805-817.	2.0	52
269	Biomechanical experiments on excised myocardium: Theoretical considerations. Journal of Biomechanics, 1989, 22, 377-383.	0.9	44
270	Biaxial Mechanical Behavior of Excised Epicardium. Journal of Biomechanical Engineering, 1988, 110, 349-351.	0.6	23

1

#	Article	IF	CITATIONS
271	On Constitutive Relations and Finite Deformations of Passive Cardiac Tissue: I. A Pseudostrain-Energy Function. Journal of Biomechanical Engineering, 1987, 109, 298-304.	0.6	186

Disparate changes in the mechanical properties of murine carotid arteries and aorta in response to chronic infusion of angiotensin-II. , 0, .