Gary D Lopaschuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7664770/publications.pdf Version: 2024-02-01

		5891	6128
257	27,580	81	159
papers	citations	h-index	g-index
263	263	263	24155
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Branched-Chain Amino Acid Metabolism in the Failing Heart. Cardiovascular Drugs and Therapy, 2023, 37, 413-420.	1.3	23
2	CrossTalk proposal: Ketone bodies are an important metabolic fuel for the heart. Journal of Physiology, 2022, 600, 1001-1004.	1.3	10
3	Rebuttal from Gary D. Lopaschuk and Qutuba G. Karwi. Journal of Physiology, 2022, 600, 1009-1009.	1.3	1
4	Concurrent diabetes and heart failure: interplay and novel therapeutic approaches. Cardiovascular Research, 2022, 118, 686-715.	1.8	24
5	Metabolic, structural and biochemical changes in diabetes and the development of heart failure. Diabetologia, 2022, 65, 411-423.	2.9	19
6	Mechanisms of action of SGLT2 inhibitors and their beneficial effects on the cardiorenal axis. Canadian Journal of Physiology and Pharmacology, 2022, 100, 93-106.	0.7	11
7	Ketones regulate endothelial homeostasis. Cell Metabolism, 2022, 34, 513-515.	7.2	5
8	RPlâ€194 is a Novel Troponin Activator that Increases the Calcium Sensitivity of Striated Muscle Contraction. FASEB Journal, 2022, 36, .	0.2	0
9	Ketones can become the major fuel source for the heart but do not increase cardiac efficiency. Cardiovascular Research, 2021, 117, 1178-1187.	1.8	55
10	Targeting the Brain to Protect the Heart. JACC Basic To Translational Science, 2021, 6, 71-73.	1.9	1
11	Cardiac Energy Metabolism in Heart Failure. Circulation Research, 2021, 128, 1487-1513.	2.0	433
12	Barth syndrome-related cardiomyopathy is associated with a reduction in myocardial glucose oxidation. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H2255-H2269.	1.5	9
13	Post-translational Acetylation Control of Cardiac Energy Metabolism. Frontiers in Cardiovascular Medicine, 2021, 8, 723996.	1.1	17
14	Inhibition of lipid metabolism exerts antitumor effects on rhabdomyosarcoma. Cancer Medicine, 2021, 10, 6442-6455.	1.3	7
15	Deletion of BCATm increases insulin-stimulated glucose oxidation in the heart. Metabolism: Clinical and Experimental, 2021, 124, 154871.	1.5	18
16	The Contribution of Cardiac Fatty Acid Oxidation to Diabetic Cardiomyopathy Severity. Cells, 2021, 10, 3259.	1.8	20
17	Ketone metabolism in the failing heart. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158813.	1.2	50
18	Insulin directly stimulates mitochondrial glucose oxidation in the heart. Cardiovascular Diabetology, 2020, 19, 207.	2.7	29

#	Article	IF	CITATIONS
19	Selective enhancement of cardiomyocyte efficiency results in a pernicious heart condition. PLoS ONE, 2020, 15, e0236457.	1.1	3
20	SARS-CoV-2 perturbs the renin-angiotensin system and energy metabolism. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E43-E47.	1.8	24
21	Mechanisms of Cardiovascular Benefits of Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors. JACC Basic To Translational Science, 2020, 5, 632-644.	1.9	419
22	Empagliflozin improves left ventricular diastolic function of db/db mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165807.	1.8	36
23	Myocardial Ketones Metabolism in Heart Failure. Journal of Cardiac Failure, 2020, 26, 998-1005.	0.7	36
24	Abstract MP125: Branched-chain Keto Acids, Not Branched-chain Amino Acids, Impairs Cardiac Insulin Sensitivity by Disrupting Insulin Signaling in the Mitochondria. Circulation Research, 2020, 127, .	2.0	3
25	Impaired branched chain amino acid oxidation contributes to cardiac insulin resistance in heart failure. Cardiovascular Diabetology, 2019, 18, 86.	2.7	102
26	Malonyl CoA Decarboxylase Inhibition Improves Cardiac Function Post-Myocardial Infarction. JACC Basic To Translational Science, 2019, 4, 385-400.	1.9	37
27	The peptide hormone adropin regulates signal transduction pathways controlling hepatic glucose metabolism in a mouse model of diet-induced obesity. Journal of Biological Chemistry, 2019, 294, 13366-13377.	1.6	52
28	Trimetazidine in cardiovascular medicine. International Journal of Cardiology, 2019, 293, 39-44.	0.8	59
29	Allosteric, transcriptional and post-translational control of mitochondrial energy metabolism. Biochemical Journal, 2019, 476, 1695-1712.	1.7	25
30	Adropin regulates cardiac energy metabolism and improves cardiac function and efficiency. Metabolism: Clinical and Experimental, 2019, 98, 37-48.	1.5	42
31	Statins Reduce Epicardial Adipose Tissue Attenuation Independent of Lipid Lowering: A Potential Pleiotropic Effect. Journal of the American Heart Association, 2019, 8, e013104.	1.6	73
32	Weight loss enhances cardiac energy metabolism and function in heart failure associated with obesity. Diabetes, Obesity and Metabolism, 2019, 21, 1944-1955.	2.2	31
33	Increased ketone body oxidation provides additional energy for the failing heart without improving cardiac efficiency. Cardiovascular Research, 2019, 115, 1606-1616.	1.8	114
34	A novel role of endothelial autophagy as a regulator of myocardial fatty acid oxidation. Journal of Thoracic and Cardiovascular Surgery, 2019, 157, 185-193.	0.4	9
35	Cardiac-specific deficiency of the mitochondrial calcium uniporter augments fatty acid oxidation and functional reserve. Journal of Molecular and Cellular Cardiology, 2019, 127, 223-231.	0.9	27
36	Targeting the glucagon receptor improves cardiac function and enhances insulin sensitivity following a myocardial infarction. Cardiovascular Diabetology, 2019, 18, 1.	2.7	98

#	Article	IF	CITATIONS
37	Abstract 868: A Cardiac Specific Branched Chain Aminotransferase Deletion Increases Insulin Stimulated Glucose Oxidation in the Mouse Heart. Circulation Research, 2019, 125, .	2.0	4
38	Increased cardiac fatty acid oxidation in a mouse model with decreased malonyl-CoA sensitivity of CPT1B. Cardiovascular Research, 2018, 114, 1324-1334.	1.8	37
39	Treading slowly through hypoxic waters: dichloroacetate to the rescue!. Journal of Physiology, 2018, 596, 2957-2958.	1.3	1
40	Cytosolic carnitine acetyltransferase as a source of cytosolic acetyl-CoA: a possible mechanism for regulation of cardiac energy metabolism. Biochemical Journal, 2018, 475, 959-976.	1.7	26
41	Uncoupling of glycolysis from glucose oxidation accompanies the development of heart failure with preserved ejection fraction. Molecular Medicine, 2018, 24, 3.	1.9	72
42	Loss of Metabolic Flexibility in the Failing Heart. Frontiers in Cardiovascular Medicine, 2018, 5, 68.	1.1	258
43	Acetylation contributes to hypertrophy-caused maturational delay of cardiac energy metabolism. JCI Insight, 2018, 3, .	2.3	21
44	Empagliflozin Increases Cardiac EnergyÂProductionÂin Diabetes. JACC Basic To Translational Science, 2018, 3, 575-587.	1.9	263
45	Cardiac branched-chain amino acid oxidation is reduced during insulin resistance in the heart. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E1046-E1052.	1.8	44
46	Alterations in Myocardial Energy Metabolism in Streptozotocin Diabetes. , 2018, , 19-38.		1
47	Complex Energy Metabolic Changes in Heart Failure With Preserved Ejection Fraction and Heart Failure With Reduced Ejection Fraction. Canadian Journal of Cardiology, 2017, 33, 860-871.	0.8	113
48	Metabolic Modulators in Heart Disease: Past, Present, and Future. Canadian Journal of Cardiology, 2017, 33, 838-849.	0.8	111
49	Decreased Maternal Cardiac Glucose Oxidation. Circulation Research, 2017, 121, 1299-1301.	2.0	Ο
50	Nrg4 promotes fuel oxidation and a healthy adipokine profile to ameliorate diet-induced metabolic disorders. Molecular Metabolism, 2017, 6, 863-872.	3.0	97
51	Obesity and type 2 diabetes have additive effects on left ventricular remodelling in normotensive patients-a cross sectional study. Cardiovascular Diabetology, 2017, 16, 21.	2.7	35
52	ACE2 Deficiency Worsens Epicardial Adipose Tissue Inflammation and Cardiac Dysfunction in Response to Diet-Induced Obesity. Diabetes, 2016, 65, 85-95.	0.3	193
53	Inhibition of the Unfolded Protein Response Mechanism Prevents Cardiac Fibrosis. PLoS ONE, 2016, 11, e0159682.	1.1	50
54	Inhibition of Soluble Epoxide Hydrolase Limits Mitochondrial Damage and Preserves Function Following Ischemic Injury. Frontiers in Pharmacology, 2016, 7, 133.	1.6	27

#	Article	IF	CITATIONS
55	Acetylation and succinylation contribute to maturational alterations in energy metabolism in the newborn heart. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H347-H363.	1.5	70
56	Fatty Acid Oxidation and Its Relation with Insulin Resistance and Associated Disorders. Annals of Nutrition and Metabolism, 2016, 68, 15-20.	1.0	52
57	Evolving Concepts of Myocardial Energy Metabolism. Circulation Research, 2016, 119, 1173-1176.	2.0	90
58	Reply to Katlandur, Ozbek, and Keser. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E863-E863.	1.8	1
59	Preface to the BBA special issue "heart lipid metabolism― Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1423-1424.	1.2	0
60	Assessing Cardiac Metabolism. Circulation Research, 2016, 118, 1659-1701.	2.0	211
61	Genetic and Pharmacological Inhibition of Malonyl CoA Decarboxylase Does Not Exacerbate Age-Related Insulin Resistance in Mice. Diabetes, 2016, 65, 1883-1891.	0.3	13
62	Acetylation control of cardiac fatty acid β-oxidation and energy metabolism in obesity, diabetes, and heart failure. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 2211-2220.	1.8	77
63	Empagliflozin's Fuel Hypothesis: Not so Soon. Cell Metabolism, 2016, 24, 200-202.	7.2	111
64	Cardiac fatty acid oxidation in heart failure associated with obesity and diabetes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1525-1534.	1.2	87
65	Rationale and benefits of trimetazidine by acting on cardiac metabolism in heart failure. International Journal of Cardiology, 2016, 203, 909-915.	0.8	67
66	Accumulation of ceramide in slowâ€ŧwitch muscle contributes to the development of insulin resistance in the obese JCR:LAâ€cp rat. Experimental Physiology, 2015, 100, 730-741.	0.9	10
67	Targeting MicroRNAs to Limit Myocardial Lipid Accumulation. Circulation Research, 2015, 116, 229-231.	2.0	5
68	Lowering Body Weight in Obese Mice With Diastolic Heart Failure Improves Cardiac Insulin Sensitivity and Function: Implications for the Obesity Paradox. Diabetes, 2015, 64, 1643-1657.	0.3	58
69	Tolerance to ischaemic injury in remodelled mouse hearts: less ischaemic glycogenolysis and preserved metabolic efficiency. Cardiovascular Research, 2015, 107, 499-508.	1.8	6
70	Therapeutic effects of adropin on glucose tolerance and substrate utilization in diet-induced obese mice with insulin resistance. Molecular Metabolism, 2015, 4, 310-324.	3.0	132
71	What is good for the circulation also lessens cancer risk. European Heart Journal, 2015, 36, 1157-1162.	1.0	9
72	Activating PPARα Prevents Post–Ischemic Contractile Dysfunction in Hypertrophied Neonatal Hearts. Circulation Research, 2015, 117, 41-51.	2.0	60

#	Article	IF	CITATIONS
73	Cardiac Energy Metabolic Alterations in Pressure Overload–Induced Left and Right Heart Failure (2013) Tj ETQ	q1 <u>1</u> 0.78 0.8	4314 rgBT /○ 45
74	Feeding the fibrillating heart: Dichloroacetate improves cardiac contractile dysfunction following VF. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H1543-H1553.	1.5	13
75	Effect of Fatty Acids on Human Bone Marrow Mesenchymal Stem Cell Energy Metabolism and Survival. PLoS ONE, 2015, 10, e0120257.	1.1	60
76	Myocardial Energy Substrate Metabolism in Heart Failure : from Pathways to Therapeutic Targets. Current Pharmaceutical Design, 2015, 21, 3654-3664.	0.9	92
77	Failing mouse hearts utilize energy inefficiently and benefit from improved coupling of glycolysis and glucose oxidation. Cardiovascular Research, 2014, 101, 30-38.	1.8	83
78	Malonyl CoA: A promising target for the treatment of cardiac disease. IUBMB Life, 2014, 66, 139-146.	1.5	21
79	Treatment with the 3-Ketoacyl-CoA Thiolase Inhibitor Trimetazidine Does Not Exacerbate Whole-Body Insulin Resistance in Obese Mice. Journal of Pharmacology and Experimental Therapeutics, 2014, 349, 487-496.	1.3	17
80	Angiotensin 1–7 Ameliorates Diabetic Cardiomyopathy and Diastolic Dysfunction in <i>db/db</i> Mice by Reducing Lipotoxicity and Inflammation. Circulation: Heart Failure, 2014, 7, 327-339.	1.6	158
81	5â€2-AMP-activated protein kinase increases glucose uptake independent of GLUT4 translocation in cardiac myocytes. Canadian Journal of Physiology and Pharmacology, 2014, 92, 307-314.	0.7	18
82	Cardiovascular remodelling in coronary artery disease and heart failure. Lancet, The, 2014, 383, 1933-1943.	6.3	589
83	The link between pediatric heart failure and mitochondrial lipids. Journal of Molecular and Cellular Cardiology, 2014, 76, 71-72.	0.9	4
84	Regulation of Substrate Oxidation Preferences in Muscle by the Peptide Hormone Adropin. Diabetes, 2014, 63, 3242-3252.	0.3	86
85	Obesity-induced lysine acetylation increases cardiac fatty acid oxidation and impairs insulin signalling. Cardiovascular Research, 2014, 103, 485-497.	1.8	175
86	Role of CoA and acetyl-CoA in regulating cardiac fatty acid and glucose oxidation. Biochemical Society Transactions, 2014, 42, 1043-1051.	1.6	62
87	Cardiac dysfunction and peri-weaning mortality in malonyl-coenzyme A decarboxylase (MCD) knockout mice as a consequence of restricting substrate plasticity. Journal of Molecular and Cellular Cardiology, 2014, 75, 76-87.	0.9	18
88	Trimetazidine Therapy Prevents Obesity-Induced Cardiomyopathy in Mice. Canadian Journal of Cardiology, 2014, 30, 940-944.	0.8	26
89	Cardiac Energy Metabolism in Heart Failure Associated with Obesity and Diabetes. , 2014, , 69-88.		0
90	Impact of the renin–angiotensin system on cardiac energy metabolism in heart failure. Journal of Molecular and Cellular Cardiology, 2013, 63, 98-106.	0.9	51

#	Article	IF	CITATIONS
91	Hypothalamic malonyl-CoA and the control of food intake. Physiology and Behavior, 2013, 122, 17-24.	1.0	42
92	Regulating cardiac energy metabolism and bioenergetics by targeting the DNA damage repair protein BRCA1. Journal of Thoracic and Cardiovascular Surgery, 2013, 146, 702-709.	0.4	19
93	Gut microbiota metabolism of l-carnitine and cardiovascular risk. Atherosclerosis, 2013, 231, 456-461.	0.4	152
94	Targeting mitochondrial oxidative metabolism as an approach to treat heart failure. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 857-865.	1.9	111
95	Inhibition of Carnitine Palmitoyltransferase-1 Activity Alleviates Insulin Resistance in Diet-Induced Obese Mice. Diabetes, 2013, 62, 711-720.	0.3	98
96	Differential effects of central ghrelin on fatty acid metabolism in hypothalamic ventral medial and arcuate nuclei. Physiology and Behavior, 2013, 118, 165-170.	1.0	36
97	Pressure-overload-induced heart failure induces a selective reduction in glucose oxidation at physiological afterload. Cardiovascular Research, 2013, 97, 676-685.	1.8	112
98	Cardiac Insulin-Resistance and Decreased Mitochondrial Energy Production Precede the Development of Systolic Heart Failure After Pressure-Overload Hypertrophy. Circulation: Heart Failure, 2013, 6, 1039-1048.	1.6	196
99	Cardiac Insulin Resistance: It's Sweeter Than You Think. Endocrinology, 2013, 154, 2575-2578.	1.4	3
100	ANG II causes insulin resistance and induces cardiac metabolic switch and inefficiency: a critical role of PDK4. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H1103-H1113.	1.5	138
101	Acute Liver Carnitine Palmitoyltransferase I Overexpression Recapitulates Reduced Palmitate Oxidation of Cardiac Hypertrophy. Circulation Research, 2013, 112, 57-65.	2.0	27
102	Important role of ventromedial hypothalamic carnitine palmitoyltransferase-1a in the control of food intake. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E336-E347.	1.8	11
103	Choline Supplementation Promotes Hepatic Insulin Resistance in Phosphatidylethanolamine N-Methyltransferase-deficient Mice via Increased Glucagon Action. Journal of Biological Chemistry, 2013, 288, 837-847.	1.6	23
104	The Failing Heart: Is It an Inefficient Engine or an Engine Out of Fuel?. , 2013, , 65-84.		4
105	Inhibition of malonyl-CoA decarboxylase reduces the inflammatory response associated with insulin resistance. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E1459-E1468.	1.8	19
106	Cellular cross-talk between epicardial adipose tissue and myocardium in relation to the pathogenesis of cardiovascular disease. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E937-E949.	1.8	143
107	Cardiac hypertrophy in the newborn delays the maturation of fatty acid β-oxidation and compromises postischemic functional recovery. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H1784-H1794.	1.5	15
108	Agonist-Induced Hypertrophy and Diastolic Dysfunction Are Associated With Selective Reduction in Glucose Oxidation. Circulation: Heart Failure, 2012, 5, 493-503.	1.6	136

#	Article	IF	CITATIONS
109	Pyridine Nucleotide Regulation of Cardiac Intermediary Metabolism. Circulation Research, 2012, 111, 628-641.	2.0	68
110	An ACE Up Your Sleeve. Circulation Research, 2012, 110, 1270-1272.	2.0	1
111	A Role for Period 2 in Cardioprotection. Cell Metabolism, 2012, 16, 2-4.	7.2	3
112	Hypoxia-Induced Adaptation to Mitral Regurgitation. Journal of the American College of Cardiology, 2012, 59, 397-399.	1.2	1
113	Inhibition of Serine Palmitoyl Transferase I Reduces Cardiac Ceramide Levels and Increases Glycolysis Rates following Diet-Induced Insulin Resistance. PLoS ONE, 2012, 7, e37703.	1.1	44
114	Stimulation of glucose oxidation protects against acute myocardial infarction and reperfusion injury. Cardiovascular Research, 2012, 94, 359-369.	1.8	154
115	Activating cardiac E2F1 induces upâ€regulation of pyruvate dehydrogenase kinase 4 in mice on a short term of high fat feeding. FEBS Letters, 2012, 586, 996-1003.	1.3	18
116	Elevated levels of activated NHE1 protect the myocardium and improve metabolism following ischemia/reperfusion injury. Journal of Molecular and Cellular Cardiology, 2011, 50, 157-164.	0.9	13
117	Intracerebroventricular Leptin Administration Differentially Alters Cardiac Energy Metabolism in Mice Fed a Low-fat and High-fat Diet. Journal of Cardiovascular Pharmacology, 2011, 57, 103-113.	0.8	13
118	Cardiac diacylglycerol accumulation in high fat-fed mice is associated with impaired insulin-stimulated glucose oxidation. Cardiovascular Research, 2011, 89, 148-156.	1.8	105
119	Targeting fatty acid and carbohydrate oxidation — A novel therapeutic intervention in the ischemic and failing heart. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 1333-1350.	1.9	298
120	Long-term effects of intrauterine growth restriction on cardiac metabolism and susceptibility to ischaemia/reperfusion. Cardiovascular Research, 2011, 90, 285-294.	1.8	94
121	Chronic Inhibition of Pyruvate Dehydrogenase in Heart Triggers an Adaptive Metabolic Response. Journal of Biological Chemistry, 2011, 286, 11155-11162.	1.6	97
122	Important roles of brain-specific carnitine palmitoyltransferase and ceramide metabolism in leptin hypothalamic control of feeding. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9691-9696.	3.3	79
123	Second window of preconditioning normalizes palmitate use for oxidation and improves function during low-flow ischaemia. Cardiovascular Research, 2011, 92, 394-400.	1.8	11
124	Malonyl-CoA mediates leptin hypothalamic control of feeding independent of inhibition of CPT-1a. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R209-R217.	0.9	19
125	Energy Metabolic Phenotype of the Cardiomyocyte During Development, Differentiation, and Postnatal Maturation. Journal of Cardiovascular Pharmacology, 2010, 56, 130-140.	0.8	512
126	The inhibition of pyruvate dehydrogenase kinase improves impaired cardiac function and electrical remodeling in two models of right ventricular hypertrophy: resuscitating the hibernating right ventricular hypertrophy. Neuscitating the hibernating right ventricle. Journal of Molecular Medicine, 2010, 88, 47-60.	1.7	271

#	Article	IF	CITATIONS
127	Novel O-palmitolylated beta-E1 subunit of pyruvate dehydrogenase is phosphorylated during ischemia/reperfusion injury. Proteome Science, 2010, 8, 38.	0.7	7
128	Fatty Acid Oxidation and Malonyl-CoA Decarboxylase in the Vascular Remodeling of Pulmonary Hypertension. Science Translational Medicine, 2010, 2, 44ra58.	5.8	193
129	Inhibition of De Novo Ceramide Synthesis Reverses Diet-Induced Insulin Resistance and Enhances Whole-Body Oxygen Consumption. Diabetes, 2010, 59, 2453-2464.	0.3	296
130	Isoproterenol stimulates 5′-AMP-activated protein kinase and fatty acid oxidation in neonatal hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H1135-H1145.	1.5	14
131	High levels of fatty acids increase contractile function of neonatal rabbit hearts during reperfusion following ischemia. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H1426-H1437.	1.5	17
132	Targeting Intermediary Metabolism in the Hypothalamus as a Mechanism to Regulate Appetite. Pharmacological Reviews, 2010, 62, 237-264.	7.1	55
133	Role of fatty acid uptake and fatty acid β-oxidation in mediating insulin resistance in heart and skeletal muscle. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 1-22.	1.2	203
134	Myocardial Fatty Acid Metabolism in Health and Disease. Physiological Reviews, 2010, 90, 207-258.	13.1	1,643
135	Increased Glucose Uptake and Oxidation in Mouse Hearts Prevent High Fatty Acid Oxidation but Cause Cardiac Dysfunction in Diet-Induced Obesity. Circulation, 2009, 119, 2818-2828.	1.6	168
136	Insulin-Stimulated Cardiac Glucose Oxidation Is Increased in High-Fat Diet–Induced Obese Mice Lacking Malonyl CoA Decarboxylase. Diabetes, 2009, 58, 1766-1775.	0.3	116
137	Diastolic dysfunction in familial hypertrophic cardiomyopathy transgenic model mice. Cardiovascular Research, 2009, 82, 84-92.	1.8	62
138	Type 1 diabetic cardiomyopathy in the Akita (<i>Ins2</i> ^{WT/C96Y}) mouse model is characterized by lipotoxicity and diastolic dysfunction with preserved systolic function. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H2096-H2108.	1.5	139
139	Role of the atypical protein kinase Cζ in regulation of 5â€2-AMP-activated protein kinase in cardiac and skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E349-E357.	1.8	21
140	Suppression of 5′-AMP-activated protein kinase activity does not impair recovery of contractile function during reperfusion of ischemic hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H313-H321.	1.5	32
141	Targeting malonyl CoA inhibition of mitochondrial fatty acid uptake as an approach to treat cardiac ischemia/reperfusion. Basic Research in Cardiology, 2009, 104, 203-210.	2.5	57
142	High rates of residual fatty acid oxidation during mild ischemia decrease cardiac work and efficiency. Journal of Molecular and Cellular Cardiology, 2009, 47, 142-148.	0.9	36
143	Myocardial fatty acid utilization as a determinant of cardiac efficiency and function. Clinical Lipidology, 2009, 4, 379-389.	0.4	24
144	Mitochondrial Overload and Incomplete Fatty Acid Oxidation Contribute to Skeletal Muscle Insulin Resistance. Cell Metabolism, 2008, 7, 45-56.	7.2	1,618

#	Article	IF	CITATIONS
145	Signalling in cardiac metabolism. Cardiovascular Research, 2008, 79, 205-207.	1.8	29
146	Metabolic response to an acute jump in cardiac workload: effects on malonyl-CoA, mechanical efficiency, and fatty acid oxidation. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H954-H960.	1.5	28
147	The malonyl CoA axis as a potential target for treating ischaemic heart disease. Cardiovascular Research, 2008, 79, 259-268.	1.8	79
148	Myocardial Hypertrophy and the Maturation of Fatty Acid Oxidation in the Newborn Human Heart. Pediatric Research, 2008, 64, 643-647.	1.1	22
149	Leptin activates hypothalamic acetyl-CoA carboxylase to inhibit food intake. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17358-17363.	3.3	188
150	Role of malonyl-CoA in heart disease and the hypothalamic control of obesity. Cardiovascular Research, 2007, 73, 278-287.	1.8	74
151	Metabolic therapy for the treatment of ischemic heart disease: reality and expectations. Expert Review of Cardiovascular Therapy, 2007, 5, 1123-1134.	0.6	32
152	Malonyl CoA decarboxylase deficient mice display minimal infarct during in vivo ischemia/reperfusion. Journal of Molecular and Cellular Cardiology, 2007, 42, S194-S195.	0.9	1
153	Anti-anginal effects of partial fatty acid oxidation inhibitors. Current Opinion in Pharmacology, 2007, 7, 179-185.	1.7	23
154	Cardiac Energy Metabolism in Obesity. Circulation Research, 2007, 101, 335-347.	2.0	238
155	Alterations in energy metabolism in cardiomyopathies. Annals of Medicine, 2007, 39, 594-607.	1.5	76
156	A Mitochondria-K+ Channel Axis Is Suppressed in Cancer and Its Normalization Promotes Apoptosis and Inhibits Cancer Growth. Cancer Cell, 2007, 11, 37-51.	7.7	1,374
157	α-Lipoic acid increases cardiac glucose oxidation independent of AMP-activated protein kinase in isolated working rat hearts. Basic Research in Cardiology, 2007, 102, 436-444.	2.5	8
158	Regulation of Fatty Acid Oxidation of the Heart. , 2007, , 27-62.		0
159	Synthesis and Structureâ [^] Activity Relationship of Small-Molecule Malonyl Coenzyme A Decarboxylase Inhibitors. Journal of Medicinal Chemistry, 2006, 49, 1517-1525.	2.9	31
160	Discovery of Potent and Orally Available Malonyl-CoA Decarboxylase Inhibitors as Cardioprotective Agents. Journal of Medicinal Chemistry, 2006, 49, 4055-4058.	2.9	42
161	AMPK alterations in cardiac physiology and pathology: enemy or ally?. Journal of Physiology, 2006, 574, 95-112.	1.3	340
162	Heteroaryl substituted bis-trifluoromethyl carbinols as malonyl-CoA decarboxylase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 3484-3488.	1.0	18

#	Article	IF	CITATIONS
163	Malonyl-CoA Decarboxylase Inhibition as a Novel Approach to Treat Ischemic Heart Disease. Cardiovascular Drugs and Therapy, 2006, 20, 433-439.	1.3	33
164	Chronic activation of PPARÎ \pm is detrimental to cardiac recovery after ischemia. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H87-H95.	1.5	106
165	Optimizing Cardiac Fatty Acid and Clucose Metabolism as an Approach to Treating Heart Failure. Seminars in Cardiothoracic and Vascular Anesthesia, 2006, 10, 228-230.	0.4	24
166	Fatty Acids Attenuate Insulin Regulation of 5′-AMP–Activated Protein Kinase and Insulin Cardioprotection After Ischemia. Circulation Research, 2006, 99, 61-68.	2.0	68
167	Absence of Malonyl Coenzyme A Decarboxylase in Mice Increases Cardiac Glucose Oxidation and Protects the Heart From Ischemic Injury. Circulation, 2006, 114, 1721-1728.	1.6	131
168	Fatty acid oxidation inhibitors in the management of chronic complications of atherosclerosis. Current Atherosclerosis Reports, 2005, 7, 63-70.	2.0	36
169	Regulation of cardiac malonyl-CoA content and fatty acid oxidation during increased cardiac power. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H1033-H1037.	1.5	35
170	Malonyl-CoA decarboxylase inhibition suppresses fatty acid oxidation and reduces lactate production during demand-induced ischemia. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H2304-H2309.	1.5	71
171	Myocardial Ischemia Differentially Regulates LKB1 and an Alternate 5′-AMP-activated Protein Kinase Kinase. Journal of Biological Chemistry, 2005, 280, 183-190.	1.6	89
172	Myocardial Substrate Metabolism in the Normal and Failing Heart. Physiological Reviews, 2005, 85, 1093-1129.	13.1	1,650
173	Malonyl Coenzyme A Decarboxylase Inhibition Protects the Ischemic Heart by Inhibiting Fatty Acid Oxidation and Stimulating Glucose Oxidation. Circulation Research, 2004, 94, e78-84.	2.0	191
174	gAd-globular Head Domain of Adiponectin Increases Fatty Acid Oxidation in Newborn Rabbit Hearts. Journal of Biological Chemistry, 2004, 279, 44320-44326.	1.6	48
175	Regulation of Malonyl-CoA Concentration and Turnover in the Normal Heart. Journal of Biological Chemistry, 2004, 279, 34298-34301.	1.6	35
176	Fatty Acid Translocase/CD36 Deficiency Does Not Energetically or Functionally Compromise Hearts Before or After Ischemia. Circulation, 2004, 109, 1550-1557.	1.6	122
177	Malonyl-CoA decarboxylase (MCD) is differentially regulated in subcellular compartments by 5′AMP-activated protein kinase (AMPK). FEBS Journal, 2004, 271, 2831-2840.	0.2	49
178	Pathways and control of ketone body metabolism: on the fringe of lipid biochemistry. Prostaglandins Leukotrienes and Essential Fatty Acids, 2004, 70, 243-251.	1.0	307
179	Targets for modulation of fatty acid oxidation in the heart. Current Opinion in Investigational Drugs, 2004, 5, 290-4.	2.3	11
180	AMP-activated protein kinase (AMPK) control of fatty acid and glucose metabolism in the ischemic heart. Progress in Lipid Research, 2003, 42, 238-256.	5.3	146

#	Article	IF	CITATIONS
181	Pharmacologic Rationale for Trimetazidine in the Treatment of Ischemic Heart Disease. American Journal of Cardiovascular Drugs, 2003, 3, 21-26.	1.0	4
182	Beneficial Effects of Trimetazidine in Ex Vivo Working Ischemic Hearts Are Due to a Stimulation of Glucose Oxidation Secondary to Inhibition of Long-Chain 3-Ketoacyl Coenzyme A Thiolase. Circulation Research, 2003, 93, e33-7.	2.0	173
183	β-Hydroxybutyrate inhibits myocardial fatty acid oxidation in vivo independent of changes in malonyl-CoA content. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H1626-H1631.	1.5	68
184	Relative importance of malonyl CoA and carnitine in maturation of fatty acid oxidation in newborn rabbit heart. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H283-H289.	1.5	29
185	Potential mechanisms and consequences of cardiac triacylglycerol accumulation in insulin-resistant rats. American Journal of Physiology - Endocrinology and Metabolism, 2003, 284, E923-E930.	1.8	94
186	Regulation of fatty acid oxidation by malonyl CoA in cardiac muscle. Advances in Molecular and Cell Biology, 2003, 33, 223-241.	0.1	0
187	Control of cardiac pyruvate dehydrogenase activity in peroxisome proliferator-activated receptor-α transgenic mice. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H270-H276.	1.5	39
188	MEDICA 16 Inhibits Hepatic Acetyl-CoA Carboxylase and Reduces Plasma Triacylglycerol Levels in Insulin-Resistant JCR: LA-cp Rats. Diabetes, 2002, 51, 1548-1555.	0.3	26
189	A Role for Peroxisome Proliferator-activated Receptor α (PPARα) in the Control of Cardiac Malonyl-CoA Levels. Journal of Biological Chemistry, 2002, 277, 4098-4103.	1.6	224
190	Impaired Myocardial Fatty Acid Oxidation and Reduced Protein Expression of Retinoid X Receptor-α in Pacing-Induced Heart Failure. Circulation, 2002, 106, 606-612.	1.6	306
191	Leptin Activates Cardiac Fatty Acid Oxidation Independent of Changes in the AMP-activated Protein Kinase-Acetyl-CoA Carboxylase-Malonyl-CoA Axis. Journal of Biological Chemistry, 2002, 277, 29424-29430.	1.6	158
192	Accelerated rates of glycolysis in the hypertrophied heart: are they a methodological artifact?. American Journal of Physiology - Endocrinology and Metabolism, 2002, 282, E1039-E1045.	1.8	47
193	Malonyl CoA Control of Fatty Acid Oxidation in the Ischemic Heart. Journal of Molecular and Cellular Cardiology, 2002, 34, 1099-1109.	0.9	81
194	Introduction to JMCC Symposium on Myocardial Energy Metabolism in Health and Disease. Journal of Molecular and Cellular Cardiology, 2002, 34, 1075-1076.	0.9	3
195	High levels of fatty acids delay the recoveryof intracellular pH and cardiac efficiency inpost-ischemic hearts by inhibiting glucose oxidation. Journal of the American College of Cardiology, 2002, 39, 718-725.	1.2	229
196	Metabolic Modulation. Circulation, 2002, 105, 140-142.	1.6	59
197	Metabolic abnormalities in the diabetic heart. Heart Failure Reviews, 2002, 7, 149-159.	1.7	155
198	Energy metabolism in the hypertrophied heart. Heart Failure Reviews, 2002, 7, 161-173.	1.7	151

#	Article	IF	CITATIONS
199	The cardiac phenotype induced by PPARα overexpression mimics that caused by diabetes mellitus. Journal of Clinical Investigation, 2002, 109, 121-130.	3.9	722
200	The cardiac phenotype induced by PPARα overexpression mimics that caused by diabetes mellitus. Journal of Clinical Investigation, 2002, 109, 121-130.	3.9	458
201	Dichloroacetate improves cardiac efficiency after ischemia independent of changes in mitochondrial proton leak. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H1762-H1769.	1.5	41
202	Characterization of rat liver malonyl-CoA decarboxylase and the study of its role in regulating fatty acid metabolism. Biochemical Journal, 2000, 350, 599.	1.7	16
203	Characterization of rat liver malonyl-CoA decarboxylase and the study of its role in regulating fatty acid metabolism. Biochemical Journal, 2000, 350, 599-608.	1.7	59
204	Influence of Î ² -adrenoceptor tone on the cardioprotective efficacy of adenosine A1 receptor activation in isolated working rat hearts. British Journal of Pharmacology, 2000, 131, 537-545.	2.7	1
205	Methodology for measuring in vitro/ex vivo cardiac energy metabolism. Journal of Pharmacological and Toxicological Methods, 2000, 43, 141-152.	0.3	26
206	Contribution of malonyl-CoA decarboxylase to the high fatty acid oxidation rates seen in the diabetic heart. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H1196-H1204.	1.5	81
207	Regulation of carbohydrate metabolism in ischemia and reperfusion. American Heart Journal, 2000, 139, s115-s119.	1.2	81
208	The Antianginal Drug Trimetazidine Shifts Cardiac Energy Metabolism From Fatty Acid Oxidation to Glucose Oxidation by Inhibiting Mitochondrial Long-Chain 3-Ketoacyl Coenzyme A Thiolase. Circulation Research, 2000, 86, 580-588.	2.0	693
209	Dichloroacetate improves postischemic function of hypertrophied rat hearts. Journal of the American College of Cardiology, 2000, 36, 1378-1385.	1.2	70
210	Glucose and fatty acid metabolism in the isolated working mouse heart. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 277, R1210-R1217.	0.9	86
211	Alteration of glycogen and glucose metabolism in ischaemic and post-ischaemic working rat hearts by adenosine A1 receptor stimulation. British Journal of Pharmacology, 1999, 128, 197-205.	2.7	47
212	The isolated working mouse heart: methodological considerations. Pflugers Archiv European Journal of Physiology, 1999, 437, 979-985.	1.3	55
213	Phosphorylation control of cardiac acetyl-CoA carboxylase by cAMP-dependent protein kinase and 5'-AMP activated protein kinase. FEBS Journal, 1999, 262, 184-190.	0.2	144
214	Volume overload hypertrophy of the newborn heart slows the maturation of enzymes involved in the regulation of fatty acid metabolism. Journal of the American College of Cardiology, 1999, 33, 1724-1734.	1.2	46
215	Glucose Utilization and Glycogen Turnover are Accelerated in Hypertrophied Rat Hearts During Severe Low-flow Ischemia. Journal of Molecular and Cellular Cardiology, 1999, 31, 493-502.	0.9	53
216	Cloning and expression of rat pancreatic β-cell malonyl-CoA decarboxylase. Biochemical Journal, 1999, 340, 213-217.	1.7	33

#	Article	IF	CITATIONS
217	Maturation of fatty acid and carbohydrate metabolism in the newborn heart. Molecular and Cellular Biochemistry, 1998, 188, 49-56.	1.4	95
218	Title is missing!. , 1998, 180, 85-93.		17
219	KATP -channel activation: effects on myocardial recovery from ischaemia and role in the cardioprotective response to adenosine A1 -receptor stimulation. British Journal of Pharmacology, 1998, 124, 639-646.	2.7	11
220	Hepatic pyruvate dehydrogenase activity in humans: effect of cirrhosis, transplantation, and dichloroacetate. American Journal of Physiology - Renal Physiology, 1998, 274, G569-G577.	1.6	11
221	Intrinsic ANG II type 1 receptor stimulation contributes to recovery of postischemic mechanical function. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 274, H1524-H1531.	1.5	6
222	Acute effects of triiodothyronine on glucose and fatty acid metabolism during reperfusion of ischemic rat hearts. American Journal of Physiology - Endocrinology and Metabolism, 1998, 275, E392-E399.	1.8	24
223	Characterization of cardiac malonyl-CoA decarboxylase and its putative role in regulating fatty acid oxidation. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 275, H2122-H2129.	1.5	75
224	Glucose metabolism, H+ production and Na+/H+- exchanger mRNA levels in ischemic hearts from diabetic rats. , 1998, , 85-93.		7
225	Fatty acid metabolism in the reperfused ischemic heart. Advances in Lipobiology, 1997, 2, 29-46.	0.2	2
226	Insulin inhibition of 5′ adenosine monophosphate—activated protein kinase in the heart results in activation of acetyl coenzyme A carboxylase and inhibition of fatty acid oxidation. Metabolism: Clinical and Experimental, 1997, 46, 1270-1274.	1.5	126
227	Direct measurement of energy metabolism in the isolated working rat heart. Journal of Pharmacological and Toxicological Methods, 1997, 38, 11-17.	0.3	30
228	Alterations in Fatty Acid Oxidation During Reperfusion of the Heart After Myocardial Ischemia. American Journal of Cardiology, 1997, 80, 11A-16A.	0.7	72
229	Measurements of fatty acid and carbohydrate metabolism in te isolated working rat heart. , 1997, 172, 137-147.		51
230	Advantages and limitations of experimental techniques used to measure cardiac energy metabolism. Journal of Nuclear Cardiology, 1997, 4, 316-328.	1.4	5
231	Glucose Metabolism in the Ischemic Heart. Circulation, 1997, 95, 313-315.	1.6	140
232	Upregulation of 5′-AMP–Activated Protein Kinase Is Responsible for the Increase in Myocardial Fatty Acid Oxidation Rates Following Birth in the Newborn Rabbit. Circulation Research, 1997, 80, 482-489.	2.0	103
233	Contribution of Glycogen and Exogenous Glucose to Glucose Metabolism During Ischemia in the Hypertrophied Rat Heart. Circulation Research, 1997, 81, 540-549.	2.0	36
234	Inhibition of glycolysis and enhanced mechanical function of working rat hearts as a result of adenosine A ₁ receptor stimulation during reperfusion following ischaemia. British Journal of Pharmacology, 1996, 118, 355-363.	2.7	67

#	Article	IF	CITATIONS
235	Characterization of 5′AMP-activated protein kinase activity in the heart and its role in inhibiting acetyl-CoA carboxylase during reperfusion following ischemia. Lipids and Lipid Metabolism, 1996, 1301, 67-75.	2.6	225
236	Abnormal mechanical function in diabetes. Coronary Artery Disease, 1996, 7, 116-123.	0.3	79
237	Increased cardiac fatty acid uptake with dobutamine infusion in swine is accompanied by a decrease in malonyl CoA levels. Cardiovascular Research, 1996, 32, 879-885.	1.8	50
238	Ranolazine Stimulates Glucose Oxidation in Normoxic, Ischemic, and Reperfused Ischemic Rat Hearts. Circulation, 1996, 93, 135-142.	1.6	259
239	Cardiac Efficiency Is Improved After Ischemia by Altering Both the Source and Fate of Protons. Circulation Research, 1996, 79, 940-948.	2.0	176
240	High Rates of Fatty Acid Oxidation during Reperfusion of Ischemic Hearts Are Associated with a Decrease in Malonyl-CoA Levels Due to an Increase in 5'-AMP-activated Protein Kinase Inhibition of Acetyl-CoA Carboxylase. Journal of Biological Chemistry, 1995, 270, 17513-17520.	1.6	525
241	L-carnitine increases glucose metabolism and mechanical function following ischaemia in diabetic rat heart. Cardiovascular Research, 1995, 29, 373-378.	1.8	43
242	The role of nitric oxide in cardiac depression induced by interleukinâ€1β and tumour necrosis factorâ€Î±. British Journal of Pharmacology, 1995, 114, 27-34.	2.7	212
243	Propionyl <scp>l</scp> -Carnitine Improvement of Hypertrophied Heart Function Is Accompanied by an Increase in Carbohydrate Oxidation. Circulation Research, 1995, 77, 726-734.	2.0	82
244	Regulation of fatty acid oxidation in the mammalian heart in health and disease. Lipids and Lipid Metabolism, 1994, 1213, 263-276.	2.6	495
245	Glycolysis and glucose oxidation during reperfusion of ischemic hearts from diabetic rats. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1994, 1225, 191-199.	1.8	59
246	Triacylglycerol turnover in isolated working hearts of acutely diabetic rats. Canadian Journal of Physiology and Pharmacology, 1994, 72, 1110-1119.	0.7	72
247	The 1993 Merck Frosst Award. Acetyl-CoA carboxylase: an important regulator of fatty acid oxidation in the heart. Canadian Journal of Physiology and Pharmacology, 1994, 72, 1101-1109.	0.7	83
248	The Contribution of Glycolysis, Glucose Oxidation, Lactate Oxidation, and Fatty Acid Oxidation to ATP Production in Isolated Biventricular Working Hearts from 2-Week-Old Rabbits. Pediatric Research, 1993, 34, 735-741.	1.1	38
249	Differences in myocardial ischemic tolerance between 1- and 7-day-old rabbits. Canadian Journal of Physiology and Pharmacology, 1992, 70, 1315-1323.	0.7	13
250	Acute insulin withdrawal from diabetic BB rats decreases myocardial glycolysis during low-flow ischemia. Metabolism: Clinical and Experimental, 1992, 41, 332-338.	1.5	16
251	Identification of a small Na+/H+exchanger-like message in the rabbit myocardium. FEBS Letters, 1992, 310, 255-259.	1.3	11
252	The fate of arachidonic acid and linoleic acid in isolated working rat hearts containing normal or elevated levels of coenzyme A. Lipids and Lipid Metabolism, 1991, 1086, 217-224.	2.6	8

#	Article	IF	CITATIONS
253	Glucose oxidation is stimulated in reperfused ischemic hearts with the carnitine palmitoyltransferase 1 inhibitor, Etomoxir. Molecular and Cellular Biochemistry, 1989, 88, 175-9.	1.4	58
254	Glucose oxidation rates in fatty acid-perfused isolated working hearts from diabetic rats. Lipids and Lipid Metabolism, 1989, 1006, 97-103.	2.6	124
255	Effect of insulin treatment on long-term diabetes-induced alteration of myocardial function. General Pharmacology, 1984, 15, 545-547.	0.7	13
256	The effect of alloxan- and streptozotocin-induced diabetes on calcium transport in rat cardiac sarcoplasmic reticulum. The possible involvement of long chain acylcarnitines. Canadian Journal of Physiology and Pharmacology, 1983, 61, 439-448.	0.7	94
257	Energy Metabolism on Mitochondrial Maturation and Its Effects on Cardiomyocyte Cell Fate. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	11