Norbert Pardi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7664046/publications.pdf

Version: 2024-02-01

		101543	155660
58	9,167	36	55
papers	citations	h-index	g-index
69	69	69	10190
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Lipid nanoparticle chemistry determines how nucleoside base modifications alter mRNA delivery. Journal of Controlled Release, 2022, 341, 206-214.	9.9	27
2	Nucleoside-Modified mRNA Vaccines Protect IFNAR ^{â€"/â€"} Mice against Crimean-Congo Hemorrhagic Fever Virus Infection. Journal of Virology, 2022, 96, JVI0156821.	3.4	24
3	mRNA Vaccines in the COVID-19 Pandemic and Beyond. Annual Review of Medicine, 2022, 73, 17-39.	12.2	120
4	Lyophilization provides long-term stability for a lipid nanoparticle-formulated, nucleoside-modified mRNA vaccine. Molecular Therapy, 2022, 30, 1941-1951.	8.2	98
5	mRNA-encoded HIV-1 Env trimer ferritin nanoparticles induce monoclonal antibodies that neutralize heterologous HIV-1 isolates in mice. Cell Reports, 2022, 38, 110514.	6.4	23
6	Added to pre-existing inflammation, mRNA-lipid nanoparticles induce inflammation exacerbation (IE). Journal of Controlled Release, 2022, 344, 50-61.	9.9	49
7	D614G Spike Mutation Increases SARS CoV-2 Susceptibility to Neutralization. Cell Host and Microbe, 2021, 29, 23-31.e4.	11.0	308
8	Murine liver repair via transient activation of regenerative pathways in hepatocytes using lipid nanoparticle-complexed nucleoside-modified mRNA. Nature Communications, 2021, 12, 613.	12.8	61
9	Transient yet Robust Expression of Proteins in the Mouse Liver via Intravenous Injection of Lipid Nanoparticle-encapsulated Nucleoside-modified mRNA. Bio-protocol, 2021, 11, e4184.	0.4	7
10	Lipid nanoparticle encapsulated nucleoside-modified mRNA vaccines elicit polyfunctional HIV-1 antibodies comparable to proteins in nonhuman primates. Npj Vaccines, 2021, 6, 50.	6.0	46
11	Neutralizing antibody vaccine for pandemic and pre-emergent coronaviruses. Nature, 2021, 594, 553-559.	27.8	199
12	In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels. Nature Biotechnology, 2021, 39, 949-957.	17.5	196
13	mRNA Innovates the Vaccine Field. Vaccines, 2021, 9, 486.	4.4	11
14	Messenger RNA expressing PfCSP induces functional, protective immune responses against malaria in mice. Npj Vaccines, 2021, 6, 84.	6.0	52
15	Nucleoside-modified VEGFC mRNA induces organ-specific lymphatic growth and reverses experimental lymphedema. Nature Communications, 2021, 12, 3460.	12.8	30
16	Highly efficient CD4+ TÂcell targeting and genetic recombination using engineered CD4+ cell-homing mRNA-LNPs. Molecular Therapy, 2021, 29, 3293-3304.	8.2	88
17	Chimeric spike mRNA vaccines protect against Sarbecovirus challenge in mice. Science, 2021, 373, 991-998.	12.6	144
18	Lipid-nanoparticle-encapsulated mRNA vaccines induce protective memory CD8 TÂcells against a lethal viral infection. Molecular Therapy, 2021, 29, 2769-2781.	8.2	20

#	Article	IF	Citations
19	Antigen modifications improve nucleoside-modified mRNA-based influenza virus vaccines in mice. Molecular Therapy - Methods and Clinical Development, 2021, 22, 84-95.	4.1	20
20	Vaccination with Messenger RNA: A Promising Alternative to DNA Vaccination. Methods in Molecular Biology, 2021, 2197, 13-31.	0.9	33
21	Trivalent nucleoside-modified mRNA vaccine yields durable memory B cell protection against genital herpes in preclinical models. Journal of Clinical Investigation, 2021, 131, .	8.2	17
22	Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity, 2021, 54, 2877-2892.e7.	14.3	260
23	mRNA vaccination induces tick resistance and prevents transmission of the Lyme disease agent. Science Translational Medicine, 2021, 13, eabj9827.	12.4	71
24	Tick immunity using mRNA, DNA and protein-based Salp14 delivery strategies. Vaccine, 2021, 39, 7661-7668.	3.8	16
25	Nucleoside-modified mRNA vaccination partially overcomes maternal antibody inhibition of de novo immune responses in mice. Science Translational Medicine, 2020, 12, .	12.4	27
26	Protection against herpes simplex virus type 2 infection in a neonatal murine model using a trivalent nucleoside-modified mRNA in lipid nanoparticle vaccine. Vaccine, 2020, 38, 7409-7413.	3.8	23
27	SARS-CoV-2 mRNA Vaccines Foster Potent Antigen-Specific Germinal Center Responses Associated with Neutralizing Antibody Generation. Immunity, 2020, 53, 1281-1295.e5.	14.3	285
28	An HSV-2 nucleoside-modified mRNA genital herpes vaccine containing glycoproteins gC, gD, and gE protects mice against HSV-1 genital lesions and latent infection. PLoS Pathogens, 2020, 16, e1008795.	4.7	31
29	A Single Immunization with Nucleoside-Modified mRNA Vaccines Elicits Strong Cellular and Humoral Immune Responses against SARS-CoV-2 in Mice. Immunity, 2020, 53, 724-732.e7.	14.3	267
30	Development of vaccines and antivirals for combating viral pandemics. Nature Biomedical Engineering, 2020, 4, 1128-1133.	22.5	66
31	A Multi-Targeting, Nucleoside-Modified mRNA Influenza Virus Vaccine Provides Broad Protection in Mice. Molecular Therapy, 2020, 28, 1569-1584.	8.2	188
32	The Transcription Factor T-bet Resolves Memory B Cell Subsets with Distinct Tissue Distributions and Antibody Specificities in Mice and Humans. Immunity, 2020, 52, 842-855.e6.	14.3	144
33	Human Cytomegalovirus Glycoprotein B Nucleoside-Modified mRNA Vaccine Elicits Antibody Responses with Greater Durability and Breadth than MF59-Adjuvanted gB Protein Immunization. Journal of Virology, 2020, 94, .	3.4	37
34	Selective targeting of nanomedicine to inflamed cerebral vasculature to enhance the blood–brain barrier. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3405-3414.	7.1	97
35	Recent advances in mRNA vaccine technology. Current Opinion in Immunology, 2020, 65, 14-20.	5.5	295
36	Messenger RNA-Based Vaccines Against Infectious Diseases. Current Topics in Microbiology and Immunology, 2020, , 111-145.	1,1	43

#	Article	IF	CITATIONS
37	Anti-PfGARP activates programmed cell death of parasites and reduces severe malaria. Nature, 2020, 582, 104-108.	27.8	59
38	Title is missing!. , 2020, 16, e1008795.		0
39	Title is missing!. , 2020, 16, e1008795.		0
40	Title is missing!. , 2020, 16, e1008795.		0
41	Title is missing!. , 2020, 16, e1008795.		O
42	Purification of mRNA Encoding Chimeric Antigen Receptor Is Critical for Generation of a Robust T-Cell Response. Human Gene Therapy, 2019, 30, 168-178.	2.7	81
43	Nucleoside-modified mRNA encoding HSV-2 glycoproteins C, D, and E prevents clinical and subclinical genital herpes. Science Immunology, 2019, 4, .	11.9	72
44	Characterization of HIV-1 Nucleoside-Modified mRNA Vaccines in Rabbits and Rhesus Macaques. Molecular Therapy - Nucleic Acids, 2019, 15, 36-47.	5.1	79
45	mRNA vaccines — a new era in vaccinology. Nature Reviews Drug Discovery, 2018, 17, 261-279.	46.4	2,668
46	Increased surface expression of HIV-1 envelope is associated with improved antibody response in vaccinia prime/protein boost immunization. Virology, 2018, 514, 106-117.	2.4	29
47	PECAM-1 directed re-targeting of exogenous mRNA providing two orders of magnitude enhancement of vascular delivery and expression in lungs independent of apolipoprotein E-mediated uptake. Journal of Controlled Release, 2018, 291, 106-115.	9.9	106
48	New Kids on the Block: RNA-Based Influenza Virus Vaccines. Vaccines, 2018, 6, 20.	4.4	61
49	Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses. Journal of Experimental Medicine, 2018, 215, 1571-1588.	8.5	366
50	Nucleoside-modified mRNA immunization elicits influenza virus hemagglutinin stalk-specific antibodies. Nature Communications, 2018, 9, 3361.	12.8	189
51	Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature, 2017, 543, 248-251.	27.8	699
52	Administration of nucleoside-modified mRNA encoding broadly neutralizing antibody protects humanized mice from HIV-1 challenge. Nature Communications, 2017, 8, 14630.	12.8	259
53	Measuring the Adjuvant Activity of RNA Vaccines. Methods in Molecular Biology, 2017, 1499, 143-153.	0.9	8
54	Nucleoside Modified mRNA Vaccines for Infectious Diseases. Methods in Molecular Biology, 2017, 1499, 109-121.	0.9	86

#	Article	IF	CITATIONS
55	Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. Journal of Controlled Release, 2015, 217, 345-351.	9.9	629
56	Generating an Anti-HIV Vaccine Using Nucleoside-modified mRNA Encoding Envelope. AIDS Research and Human Retroviruses, 2014, 30, A249-A249.	1.1	1
57	In Vitro Transcription of Long RNA Containing Modified Nucleosides. Methods in Molecular Biology, 2013, 969, 29-42.	0.9	130
58	HPLC Purification of In Vitro Transcribed Long RNA. Methods in Molecular Biology, 2013, 969, 43-54.	0.9	130