Andrea Guerra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/766385/publications.pdf

Version: 2024-02-01

53 1,566
papers citations

304743 345221 36
h-index g-index

61 61 docs citations

61 times ranked 1689

#	Article	IF	CITATIONS
1	Phase Dependency of the Human Primary Motor Cortex and Cholinergic Inhibition Cancelation During Beta tACS. Cerebral Cortex, 2016, 26, 3977-3990.	2.9	104
2	Neurophysiological correlates of bradykinesia in Parkinson's disease. Brain, 2018, 141, 2432-2444.	7.6	99
3	Driving Human Motor Cortical Oscillations Leads to Behaviorally Relevant Changes in Local GABA _A Inhibition: A tACS-TMS Study. Journal of Neuroscience, 2017, 37, 4481-4492.	3.6	96
4	Variability in non-invasive brain stimulation studies: Reasons and results. Neuroscience Letters, 2020, 719, 133330.	2.1	95
5	Sensorimotor cortex excitability and connectivity in Alzheimer's disease: A TMS-EEG Co-registration study. Human Brain Mapping, 2016, 37, 2083-2096.	3.6	84
6	<scp><i>GBA</i>â€Related</scp> Parkinson's Disease: Dissection of Genotype–Phenotype Correlates in a Large Italian Cohort. Movement Disorders, 2020, 35, 2106-2111.	3.9	83
7	Oscillatory Activities in Neurological Disorders of Elderly: Biomarkers to Target for Neuromodulation. Frontiers in Aging Neuroscience, 2017, 9, 189.	3.4	65
8	Driving motor cortex oscillations modulates bradykinesia in Parkinson's disease. Brain, 2022, 145, 224-236.	7.6	57
9	Abnormal cortical facilitation and L-dopa-induced dyskinesia in Parkinson's disease. Brain Stimulation, 2019, 12, 1517-1525.	1.6	53
10	Motor cortex excitability in Alzheimer's disease: a transcranial magnetic stimulation follow-up study. Neuroscience Letters, 2011, 492, 94-98.	2.1	52
11	Boosting the LTP-like plasticity effect of intermittent theta-burst stimulation using gamma transcranial alternating current stimulation. Brain Stimulation, 2018, 11, 734-742.	1.6	52
12	Solutions for managing variability in non-invasive brain stimulation studies. Neuroscience Letters, 2020, 719, 133332.	2.1	52
13	Enhancing Gamma Oscillations Restores Primary Motor Cortex Plasticity in Parkinson's Disease. Journal of Neuroscience, 2020, 40, 4788-4796.	3.6	51
14	Age-related changes of cortical excitability and connectivity in healthy humans: non-invasive evaluation of sensorimotor network by means of TMS-EEG. Neuroscience, 2017, 357, 255-263.	2.3	42
15	Neurophysiological features of motor cortex excitability and plasticity in Subcortical Ischemic Vascular Dementia: A TMS mapping study. Clinical Neurophysiology, 2015, 126, 906-913.	1.5	39
16	Transcranial Magnetic Stimulation Studies in Alzheimer's Disease. International Journal of Alzheimer's Disease, 2011, 2011, 1-9.	2.0	38
17	Transcranial Alternating Current Stimulation Has Frequency-Dependent Effects on Motor Learning in Healthy Humans. Neuroscience, 2019, 411, 130-139.	2.3	38
18	Bradykinesia in Alzheimer's disease and its neurophysiological substrates. Clinical Neurophysiology, 2020, 131, 850-858.	1.5	36

#	Article	IF	Citations
19	Effects of Transcranial Alternating Current Stimulation on Repetitive Finger Movements in Healthy Humans. Neural Plasticity, 2018, 2018, 1-10.	2.2	33
20	LTD-like plasticity of the human primary motor cortex can be reversed by \hat{I}^3 -tACS. Brain Stimulation, 2019, 12, 1490-1499.	1.6	33
21	Age related differences in functional synchronization of EEG activity as evaluated by means of TMS-EEG coregistrations. Neuroscience Letters, 2017, 647, 141-146.	2.1	30
22	Is there evidence of bradykinesia in essential tremor?. European Journal of Neurology, 2020, 27, 1501-1509.	3.3	23
23	Pathophysiological Mechanisms and Experimental Pharmacotherapy for L-Dopa-Induced Dyskinesia. Journal of Experimental Pharmacology, 2021, Volume 13, 469-485.	3.2	22
24	Motor dysfunction in mild cognitive impairment as tested by kinematic analysis and transcranial magnetic stimulation. Clinical Neurophysiology, 2021, 132, 315-322.	1.5	20
25	Does an intraneural interface short-term implant for robotic hand control modulate sensorimotor cortical integration? An EEG-TMS co-registration study on a human amputee. Restorative Neurology and Neuroscience, 2014, 32, 281-292.	0.7	19
26	Motor Cortical Network Excitability in Parkinson's Disease. Movement Disorders, 2022, 37, 734-744.	3.9	19
27	Disorders of consciousness and electrophysiological treatment strategies: a review of the literature and new perspectives. Current Pharmaceutical Design, 2014, 20, 4248-67.	1.9	17
28	The effect of gamma oscillations in boosting primary motor cortex plasticity is greater in young than older adults. Clinical Neurophysiology, 2021, 132, 1358-1366.	1.5	16
29	Contribution of TMS and TMS-EEG to the Understanding of Mechanisms Underlying Physiological Brain Aging. Brain Sciences, 2021, 11, 405.	2.3	14
30	Disorders Of Consciousness And Electrophysiological Treatment Strategies: A Review Of The Literature And New Perspectives. Current Pharmaceutical Design, 2013, 999, 21-22.	1.9	14
31	TMS-EEG Biomarkers of Amnestic Mild Cognitive Impairment Due to Alzheimer's Disease: A Proof-of-Concept Six Years Prospective Study. Frontiers in Aging Neuroscience, 2021, 13, 737281.	3.4	14
32	Transcranial magnetic stimulation as a tool to induce and explore plasticity in humans. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2022, 184, 73-89.	1.8	14
33	Gamma-transcranial alternating current stimulation and theta-burst stimulation: inter-subject variability and the role of BDNF. Clinical Neurophysiology, 2020, 131, 2691-2699.	1.5	13
34	Detecting cortical circuits resonant to high-frequency oscillations in the human primary motor cortex: a TMS-tACS study. Scientific Reports, 2020, 10, 7695.	3.3	11
35	Long-term changes in short-interval intracortical facilitation modulate motor cortex plasticity and L-dopa-induced dyskinesia in Parkinson's disease. Brain Stimulation, 2022, 15, 99-108.	1.6	11
36	Phase-Amplitude Coupling of Neural Oscillations Can Be Effectively Probed with Concurrent TMS-EEG. Neural Plasticity, 2019, 2019, 1-13.	2.2	10

#	Article	IF	Citations
37	Effects of Transcranial Ultrasound Stimulation on Trigeminal Blink Reflex Excitability. Brain Sciences, 2021, 11, 645.	2.3	10
38	Investigating the effects of transcranial alternating current stimulation on primary somatosensory cortex. Scientific Reports, 2020, 10, 17129.	3.3	9
39	Transcranial alternating current stimulation modulates cortical processing of somatosensory information in a frequency- and time-specific manner. Neurolmage, 2022, 254, 119119.	4.2	8
40	Investigating and Modulating Physiological and Pathological Brain Oscillations: The Role of Oscillatory Activity in Neural Plasticity. Neural Plasticity, 2019, 2019, 1-3.	2.2	7
41	Altered speech-related cortical network in frontotemporal dementia. Brain Stimulation, 2020, 13, 765-773.	1.6	7
42	Channel interpolation in TMS-EEG: A quantitative study towards an accurate topographical representation., 2016, 2016, 989-992.		6
43	Bradykinesia in motoneuron diseases. Clinical Neurophysiology, 2021, 132, 2558-2566.	1.5	6
44	Dystonia, chorea, hemiballismus and other dyskinesias. Clinical Neurophysiology, 2022, 140, 110-125.	1.5	6
45	Neurophysiological makers of plastic brain reorganizazion following central and peripheral lesions. Archives Italiennes De Biologie, 2015, 152, 216-38.	0.4	4
46	Unilateral cortical hyperexcitability in congenital hydrocephalus: A TMS study. Neurocase, 2014, 20, 456-465.	0.6	3
47	Low-Intensity Transcranial Ultrasound Stimulation: Mechanisms of Action and Rationale for Future Applications in Movement Disorders. Brain Sciences, 2022, 12, 611.	2.3	3
48	Cardiac cycle does not affect motor evoked potential variability: A real-time EKG-EMG study. Brain Stimulation, 2021, 14, 170-172.	1.6	2
49	Editorial: Non-invasive Brain Stimulation for Neurodegenerative Disorders: From Investigation to Therapeutic Application. Frontiers in Neurology, 2022, 13, 820942.	2.4	2
50	Action Selection and Motor Decision Making: Insights from Transcranial Magnetic Stimulation. Brain Sciences, 2022, 12, 639.	2.3	2
51	The importance of assessing interactions between different circuits in primary motor cortex in Parkinson's disease. Clinical Neurophysiology, 2021, 132, 2668-2670.	1.5	1
52	Neurophysiological assessment of juvenile parkinsonism due to primary monoamine neurotransmitter disorders. Journal of Neural Transmission, 2022, 129, 1011-1021.	2.8	1
53	P189: Does an intraneural interface short-term implant for robotic hand control modulate sensorimotor cortical integration? An EEG-TMS co-registration study on a human amputee. Clinical Neurophysiology, 2014, 125, S99.	1.5	0