Edward J Pearce

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7660872/publications.pdf

Version: 2024-02-01

62 papers 20,555 citations

43 h-index 62 g-index

67 all docs

67 docs citations

67 times ranked

24217 citing authors

#	Article	IF	CITATIONS
1	Metabolic Competition in the Tumor Microenvironment Is a Driver of Cancer Progression. Cell, 2015, 162, 1229-1241.	28.9	2,158
2	Posttranscriptional Control of T Cell Effector Function by Aerobic Glycolysis. Cell, 2013, 153, 1239-1251.	28.9	1,715
3	Network Integration of Parallel Metabolic and Transcriptional Data Reveals Metabolic Modules that Regulate Macrophage Polarization. Immunity, 2015, 42, 419-430.	14.3	1,423
4	Metabolic Pathways in Immune Cell Activation and Quiescence. Immunity, 2013, 38, 633-643.	14.3	1,271
5	Mitochondrial Respiratory Capacity Is a Critical Regulator of CD8+ T Cell Memory Development. Immunity, 2012, 36, 68-78.	14.3	1,208
6	Immunometabolism governs dendritic cell and macrophage function. Journal of Experimental Medicine, 2016, 213, 15-23.	8.5	1,206
7	Mitochondrial Dynamics Controls T Cell Fate through Metabolic Programming. Cell, 2016, 166, 63-76.	28.9	1,025
8	Toll-like receptor–induced changes in glycolytic metabolism regulate dendritic cell activation. Blood, 2010, 115, 4742-4749.	1.4	998
9	Itaconate Links Inhibition of Succinate Dehydrogenase with Macrophage Metabolic Remodeling and Regulation of Inflammation. Cell Metabolism, 2016, 24, 158-166.	16.2	944
10	TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKÉ> supports the anabolic demands of dendritic cell activation. Nature Immunology, 2014, 15, 323-332.	14.5	861
11	Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nature Immunology, 2014, 15, 846-855.	14.5	856
12	Memory CD8+ T Cells Use Cell-Intrinsic Lipolysis to Support the Metabolic Programming Necessary for Development. Immunity, 2014, 41, 75-88.	14.3	650
13	The Colonic Crypt Protects Stem Cells from Microbiota-Derived Metabolites. Cell, 2016, 165, 1708-1720.	28.9	484
14	Commitment to glycolysis sustains survival of NO-producing inflammatory dendritic cells. Blood, 2012, 120, 1422-1431.	1.4	476
15	Metabolic Reprogramming Mediated by the mTORC2-IRF4 Signaling Axis Is Essential for Macrophage Alternative Activation. Immunity, 2016, 45, 817-830.	14.3	453
16	Dendritic cell metabolism. Nature Reviews Immunology, 2015, 15, 18-29.	22.7	423
17	Klf4 Expression in Conventional Dendritic Cells Is Required for T Helper 2 Cell Responses. Immunity, 2015, 42, 916-928.	14.3	326
18	Type 1 Interferons Induce Changes in Core Metabolism that Are Critical for Immune Function. Immunity, 2016, 44, 1325-1336.	14.3	248

#	Article	IF	Citations
19	Auto-aggressive CXCR6+ CD8 T cells cause liver immune pathology in NASH. Nature, 2021, 592, 444-449.	27.8	233
20	Polyamines and eIF5A Hypusination Modulate Mitochondrial Respiration and Macrophage Activation. Cell Metabolism, 2019, 30, 352-363.e8.	16.2	223
21	Mitochondrial Integrity Regulated by Lipid Metabolism Is a Cell-Intrinsic Checkpoint for Treg Suppressive Function. Cell Metabolism, 2020, 31, 422-437.e5.	16.2	215
22	Mitochondrial Priming by CD28. Cell, 2017, 171, 385-397.e11.	28.9	212
23	Acetate Promotes T Cell Effector Function during Glucose Restriction. Cell Reports, 2019, 27, 2063-2074.e5.	6.4	205
24	Metabolic interventions in the immune response to cancer. Nature Reviews Immunology, 2019, 19, 324-335.	22.7	190
25	MenTORing Immunity: mTOR Signaling in the Development and Function of Tissue-Resident Immune Cells. Immunity, 2017, 46, 730-742.	14.3	179
26	Microbiota-derived acetate enables the metabolic fitness of the brain innate immune system during health and disease. Cell Metabolism, 2021, 33, 2260-2276.e7.	16.2	173
27	Inflammatory macrophage dependence on NAD+ salvage is a consequence of reactive oxygen species–mediated DNA damage. Nature Immunology, 2019, 20, 420-432.	14.5	169
28	Inhibition of Mechanistic Target of Rapamycin Promotes Dendritic Cell Activation and Enhances Therapeutic Autologous Vaccination in Mice. Journal of Immunology, 2012, 189, 2151-2158.	0.8	159
29	Gata6 regulates aspartoacylase expression in resident peritoneal macrophages and controls their survival. Journal of Experimental Medicine, 2014, 211, 1525-1531.	8.5	159
30	Triacylglycerol synthesis enhances macrophage inflammatory function. Nature Communications, 2020, 11, 4107.	12.8	127
31	Polyamine metabolism is a central determinant of helper TÂcell lineage fidelity. Cell, 2021, 184, 4186-4202.e20.	28.9	121
32	Mechanistic Target of Rapamycin Inhibition Extends Cellular Lifespan in Dendritic Cells by Preserving Mitochondrial Function. Journal of Immunology, 2014, 193, 2821-2830.	0.8	116
33	Metabolic adaptations of tissue-resident immune cells. Nature Immunology, 2019, 20, 793-801.	14.5	115
34	Metabolic control of dendritic cell activation and function: recent advances and clinical implications. Frontiers in Immunology, 2014, 5, 203.	4.8	112
35	Metabolic orchestration of the wound healing response. Cell Metabolism, 2021, 33, 1726-1743.	16.2	101
36	Migratory CD103+ dendritic cells suppress helminth-driven type 2 immunity through constitutive expression of IL-12. Journal of Experimental Medicine, 2016, 213, 35-51.	8.5	90

#	Article	IF	Citations
37	Mitochondrial metabolism coordinates stage-specific repair processes in macrophages during wound healing. Cell Metabolism, 2021, 33, 2398-2414.e9.	16.2	89
38	Metabolic conditioning of CD8+ effector T cells for adoptive cell therapy. Nature Metabolism, 2020, 2, 703-716.	11.9	83
39	Ly6Chi Monocyte Recruitment Is Responsible for Th2 Associated Host-Protective Macrophage Accumulation in Liver Inflammation due to Schistosomiasis. PLoS Pathogens, 2014, 10, e1004282.	4.7	81
40	SnapShot: Immunometabolism. Cell Metabolism, 2015, 22, 190-190.e1.	16.2	77
41	Mitochondrial Membrane Potential Regulates Nuclear Gene Expression in Macrophages Exposed to Prostaglandin E2. Immunity, 2018, 49, 1021-1033.e6.	14.3	75
42	Driving immunity: all roads lead to metabolism. Nature Reviews Immunology, 2018, 18, 81-82.	22.7	71
43	A common framework of monocyte-derived macrophage activation. Science Immunology, 2022, 7, eabl7482.	11.9	58
44	IL-4–Secreting Secondary T Follicular Helper (Tfh) Cells Arise from Memory T Cells, Not Persisting Tfh Cells, through a B Cell–Dependent Mechanism. Journal of Immunology, 2015, 194, 2999-3010.	0.8	45
45	Cellâ€intrinsic metabolic regulation of mononuclear phagocyte activation: Findings from the tip of the iceberg. Immunological Reviews, 2020, 295, 54-67.	6.0	45
46	Metabolism and acetylation in innate immune cell function and fate. Seminars in Immunology, 2016, 28, 408-416.	5.6	39
47	The Transcriptional Repressor Polycomb Group Factor 6, PCGF6, Negatively Regulates Dendritic Cell Activation and Promotes Quiescence. Cell Reports, 2016, 16, 1829-1837.	6.4	32
48	Dynamic Cardiolipin Synthesis Is Required for CD8+ T Cell Immunity. Cell Metabolism, 2020, 32, 981-995.e7.	16.2	32
49	The metabolic control of schistosome egg production. Cellular Microbiology, 2015, 17, 796-801.	2.1	30
50	Plasmacytoid dendritic cell activation is dependent on coordinated expression of distinct amino acid transporters. Immunity, 2021, 54, 2514-2530.e7.	14.3	28
51	Trained immunity of alveolar macrophages requires metabolic rewiring and type 1 interferon signaling. Mucosal Immunology, 2022, 15, 896-907.	6.0	26
52	Schistosoma mansoni Infection-Induced Transcriptional Changes in Hepatic Macrophage Metabolism Correlate With an Athero-Protective Phenotype. Frontiers in Immunology, 2018, 9, 2580.	4.8	23
53	TPL-2 Regulates Macrophage Lipid Metabolism and M2 Differentiation to Control TH2-Mediated Immunopathology. PLoS Pathogens, 2016, 12, e1005783.	4.7	22
54	Intracellular infection and immune system cues rewire adipocytes to acquire immune function. Cell Metabolism, 2022, 34, 747-760.e6.	16.2	21

#	Article	IF	CITATIONS
55	Gene-selective transcription promotes the inhibition of tissue reparative macrophages by TNF. Life Science Alliance, 2022, 5, e202101315.	2.8	10
56	Treg Cells Survive and Thrive in Inhospitable Environments. Cell Metabolism, 2017, 25, 1213-1215.	16.2	8
57	Disrupting metabolism to treat autoimmunity. Science, 2018, 360, 377-378.	12.6	8
58	Leptin Signaling Suppression in Macrophages Improves Immunometabolic Outcomes in Obesity. Diabetes, 2022, 71, 1546-1561.	0.6	8
59	Sulfasalazine: a risk factor for severe COVID-19?. Lancet Rheumatology, The, 2022, , .	3.9	5
60	To facitinib suppresses IL-10/IL-10R signaling and modulates host defense responses in human macrophages. Journal of Investigative Dermatology, 2021, , .	0.7	3
61	Immunometabolism governs dendritic cell and macrophage function. Journal of Cell Biology, 2016, 212, 21210IA306.	5.2	3
62	For Macrophages, Ndufs Is Enough. Immunity, 2014, 41, 351-353.	14.3	1