Kimberly J Bussey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7660796/publications.pdf

Version: 2024-02-01

201674 254184 4,718 54 27 citations h-index papers

g-index 56 56 56 7193 docs citations times ranked citing authors all docs

43

#	Article	IF	CITATIONS
1	Cancer progression as a sequence of atavistic reversions. BioEssays, 2021, 43, e2000305.	2.5	37
2	Reverting to single-cell biology: The predictions of the atavism theory of cancer. Progress in Biophysics and Molecular Biology, 2021, 165, 49-55.	2.9	12
3	MYBPC3 Haplotype Linked to Hypertrophic Cardiomyopathy in Rhesus Macaques (Macaca mulatta). Comparative Medicine, 2020, 70, 358-367.	1.0	O
4	Abstract 3381: Determining the relationship between a measure of stress-induced mutagenesis and patient survival in cancer. , $2018, \ldots$		0
5	A platform for high-throughput bioenergy production phenotype characterization in single cells. Scientific Reports, 2017, 7, 45399.	3.3	12
6	Ancestral gene regulatory networks drive cancer. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6160-6162.	7.1	46
7	Ancient genes establish stress-induced mutation as a hallmark of cancer. PLoS ONE, 2017, 12, e0176258.	2.5	33
8	Abstract 507: A signature of stress-induced mutagenesis in cancer. , 2017, , .		0
9	Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma. Cancer Cell, 2016, 29, 723-736.	16.8	482
10	Transcriptional regulation by normal epithelium of premalignant to malignant progression in Barrett's esophagus. Scientific Reports, 2016, 6, 35227.	3.3	3
11	Vorinostat differentially alters 3D nuclear structure of cancer and non-cancerous esophageal cells. Scientific Reports, 2016, 6, 30593.	3.3	3
12	Targeting poloâ€like kinase 1, a regulator of p53, in the treatment of adrenocortical carcinoma. Clinical and Translational Medicine, 2016, 5, 1.	4.0	28
13	Pathway Implications of Aberrant Global Methylation in Adrenocortical Cancer. PLoS ONE, 2016, 11, e0150629.	2.5	35
14	Ancient hot and cold genes and chemotherapy resistance emergence. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10467-10472.	7.1	41
15	Abstract 4033: Suppressive role of normal epithelium in pre-malignant to malignant progression of Barrett's esophagus. , 2015, , .		O
16	ZNF367 Inhibits Cancer Progression and Is Targeted by miR-195. PLoS ONE, 2014, 9, e101423.	2. 5	36
17	Detection of an ATRT Brain Tumor Gene Deletion Diagnostic in Circulating Blood using Next Gen Sequencing. Cancer Genetics, 2014, 207, 450.	0.4	1
18	Detection of an Atypical Teratoid Rhabdoid Brain Tumor Gene Deletion in Circulating Blood Using Next-Generation Sequencing. Journal of Child Neurology, 2014, 29, NP81-NP85.	1.4	10

#	Article	IF	Citations
19	Wholeâ€genome Sequencing of an Aggressive BRAF Wildâ€type Papillary Thyroid Cancer Identified EML4–ALK Translocation as a Therapeutic Target. World Journal of Surgery, 2014, 38, 1296-1305.	1.6	54
20	Abstract 4297: Quantifying three-dimensional cellular morphology and its heterogeneity in epithelial cancers by single-cell optical tomography. , 2014, , .		0
21	PTTG1 overexpression in adrenocortical cancer is associated with poor survival and represents a potential therapeutic target. Surgery, 2013, 154, 1405-1416.	1.9	73
22	Abstract 1781: Whole-genome and RNA sequencing identify a novel recurrent translocation in adrenocortical carcinoma , 2013 , , .		0
23	Abstract B10: Vorinostat exposure results in decreased lamin B1 expression and nuclear structure normalization in an in vitro model of esophageal adenocarcinoma progression. , 2013, , .		0
24	A fly in the ointment: reassessing mitotane's role in the treatment of adrenocortical carcinoma. Pharmacogenomics, 2012, 13, 1207-1209.	1.3	3
25	Preclinical Investigation of Nanoparticle Albumin-Bound Paclitaxel as a Potential Treatment for Adrenocortical Cancer. Annals of Surgery, 2012, 255, 140-146.	4.2	17
26	Isotropic 3D Nuclear Morphometry of Normal, Fibrocystic and Malignant Breast Epithelial Cells Reveals New Structural Alterations. PLoS ONE, 2012, 7, e29230.	2.5	57
27	Abstract 978: Inhibition of Polo-like kinase 1 as a strategy in the treatment of adrenocortical carcinoma. , $2012, \ldots$		1
28	Abstract 4057: Quantitative assessment of 3D nuclear architecture in colon epithelial cells by micro-optical computed tomography. , 2012, , .		0
29	Abstract 5668: Vorinostat exposure results in differential sensitivity and nuclear structure normalization in an in vitro model of esophageal adenocarcinoma progression. , 2012, , .		0
30	Toward a pathway-centered approach for the treatment of adrenocortical carcinoma. Current Opinion in Oncology, 2011, 23, 34-44.	2.4	5
31	Targeted Therapies for Adrenocortical Carcinoma: IGF and Beyond. Hormones and Cancer, 2011, 2, 385-392.	4.9	20
32	Genomic signatures of cancer: Basis for individualized risk assessment, selective staging and therapy. Journal of Surgical Oncology, 2011, 103, 563-573.	1.7	32
33	Abstract LB-264: Whole genome sequencing of an adrenocortical carcinoma reveals a pathogenic context and exposes therapeutic options. , 2011, , .		0
34	Multi-Institutional Tumor Banking. Pancreas, 2010, 39, 949-954.	1.1	7
35	Multifactorial Regulation of E-Cadherin Expression: An Integrative Study. Molecular Cancer Therapeutics, 2010, 9, 1-16.	4.1	49
36	Abstract 3672: Adrenocortical carcinoma cell lines are sensitive to compounds targeting the G2/M transition. , 2010, , .		1

#	Article	IF	CITATIONS
37	Genomic and expression profiling of adrenocortical carcinoma: application to diagnosis, prognosis and treatment. Future Oncology, 2009, 5, 641-655.	2.4	18
38	Adrenocortical Cancer. Surgical Clinics of North America, 2009, 89, 1255-1267.	1.5	38
39	Asparagine synthetase as a causal, predictive biomarker for l-asparaginase activity in ovarian cancer cells. Molecular Cancer Therapeutics, 2006, 5, 2613-2623.	4.1	97
40	Integrating data on DNA copy number with gene expression levels and drug sensitivities in the NCI-60 cell line panel. Molecular Cancer Therapeutics, 2006, 5, 853-867.	4.1	157
41	Karyotypic "state" as a potential determinant for anticancer drug discovery. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2964-2969.	7.1	25
42	Membrane Transporters and Channels. Cancer Research, 2004, 64, 4294-4301.	0.9	281
43	Mistaken identifiers: gene name errors can be introduced inadvertently when using Excel in bioinformatics. BMC Bioinformatics, 2004, 5, 80.	2.6	95
44	Predicting drug sensitivity and resistance. Cancer Cell, 2004, 6, 129-137.	16.8	496
45	Comparing cDNA and oligonucleotide array data: concordance of gene expression across platforms for the NCI-60 cancer cells. Genome Biology, 2003, 4, R82.	9.6	91
46	MatchMiner: a tool for batch navigation among gene and gene product identifiers. Genome Biology, 2003, 4, R27.	9.6	135
47	GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biology, 2003, 4, R28.	9.6	1,038
48	Proteomic profiling of the NCI-60 cancer cell lines using new high-density reverse-phase lysate microarrays. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14229-14234.	7.1	463
49	Diagnostic markers that distinguish colon and ovarian adenocarcinomas: identification by genomic, proteomic, and tissue array profiling. Cancer Research, 2003, 63, 5243-50.	0.9	144
50	Karyotypic complexity of the NCI-60 drug-screening panel. Cancer Research, 2003, 63, 8634-47.	0.9	227
51	SNRPN methylation patterns in germ cell tumors as a reflection of primordial germ cell development. Genes Chromosomes and Cancer, 2001, 32, 342-352.	2.8	51
52	Chromosomes 1 and 12 abnormalities in pediatric germ cell tumors by interphase fluorescence in situ hybridization. Cancer Genetics and Cytogenetics, 2001, 125, 112-118.	1.0	28
53	Chromosome abnormalities of eighty-one pediatric germ cell tumors: Sex-, age-, site-, and histopathology-related differences?a Children's Cancer Group study. Genes Chromosomes and Cancer, 1999, 25, 134-146.	2.8	136
54	Chromosome abnormalities of eightyâ€one pediatric germ cell tumors: Sexâ€, ageâ€, siteâ€, and histopathologyâ€related differences—a Children's Cancer Group study. Genes Chromosomes and Cancer, 1999, 25, 134-146.	2.8	1