
Larissa Albantakis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7660380/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	To be or to know? Information in the pristine present. Behavioral and Brain Sciences, 2022, 45, e42.	0.7	1
2	Mechanism Integrated Information. Entropy, 2021, 23, 362.	2.2	22
3	Causal reductionism and causal structures. Nature Neuroscience, 2021, 24, 1348-1355.	14.8	20
4	Computing Integrated Information ($\hat{l}_1^+)$ in Discrete Dynamical Systems with Multi-Valued Elements. Entropy, 2021, 23, 6.	2.2	11
5	Consciousness and the fallacy of misplaced objectivity. Neuroscience of Consciousness, 2021, 2021, niab032.	2.6	22
6	Quantifying the Autonomy of Structurally Diverse Automata: A Comparison of Candidate Measures. Entropy, 2021, 23, 1415.	2.2	1
7	A measure for intrinsic information. Scientific Reports, 2020, 10, 18803.	3.3	20
8	How cognitive and environmental constraints influence the reliability of simulated animats in groups. PLoS ONE, 2020, 15, e0228879.	2.5	3
9	Causal Composition: Structural Differences among Dynamically Equivalent Systems. Entropy, 2019, 21, 989.	2.2	22
10	What Caused What? A Quantitative Account of Actual Causation Using Dynamical Causal Networks. Entropy, 2019, 21, 459.	2.2	39
11	When is an action caused from within? Quantifying the causal chain leading to actions in simulated agents. , 2019, , .		1
12	How swarm size during evolution impacts the behavior, generalizability, and brain complexity of animats performing a spatial navigation task. , 2018, , .		6
13	Black-boxing and cause-effect power. PLoS Computational Biology, 2018, 14, e1006114.	3.2	48
14	PyPhi: A toolbox for integrated information theory. PLoS Computational Biology, 2018, 14, e1006343.	3.2	56
15	A Tale of Two Animats: What Does It Take to Have Goals?. The Frontiers Collection, 2018, , 5-15.	0.2	6
16	Unifying concepts of biological function from molecules to ecosystems. Oikos, 2017, 126, 1367-1376.	2.7	40
17	How causal analysis can reveal autonomy in models of biological systems. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160358.	3.4	41

18 The role of conditional independence in the evolution of intelligent systems. , 2017, , .

2

LARISSA ALBANTAKIS

#	Article	IF	CITATIONS
19	Synaptic refinement during development and its effect on slow-wave activity: a computational study. Journal of Neurophysiology, 2016, 115, 2199-2213.	1.8	22
20	Can the macro beat the micro? Integrated information across spatiotemporal scales. Neuroscience of Consciousness, 2016, 2016, niw012.	2.6	75
21	Learning a New Selection Rule in Visual and Frontal Cortex. Cerebral Cortex, 2016, 26, 3611-3626.	2.9	1
22	The Intrinsic Cause-Effect Power of Discrete Dynamical Systems—From Elementary Cellular Automata to Adapting Animats. Entropy, 2015, 17, 5472-5502.	2.2	39
23	Fitness and neural complexity of animats exposed to environmental change. BMC Neuroscience, 2015, 16, .	1.9	3
24	Evolution of Integrated Causal Structures in Animats Exposed to Environments of Increasing Complexity. PLoS Computational Biology, 2014, 10, e1003966.	3.2	71
25	From the Phenomenology to the Mechanisms of Consciousness: Integrated Information Theory 3.0. PLoS Computational Biology, 2014, 10, e1003588.	3.2	657
26	Quantifying causal emergence shows that macro can beat micro. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19790-19795.	7.1	180
27	Brain mechanisms for perceptual and reward-related decision-making. Progress in Neurobiology, 2013, 103, 194-213.	5.7	133
28	A Multiple-Choice Task with Changes of Mind. PLoS ONE, 2012, 7, e43131.	2.5	19
29	The Timing of Vision $\hat{a} \in$ How Neural Processing Links to Different Temporal Dynamics. Frontiers in Psychology, 2011, 2, 151.	2.1	10
30	What decision-making models can tell us about tactile remapping. BMC Neuroscience, 2011, 12, .	1.9	0
31	Changes of Mind in an Attractor Network of Decision-Making. PLoS Computational Biology, 2011, 7, e1002086.	3.2	51
32	The encoding of alternatives in multiple-choice decision making. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10308-10313.	7.1	62
33	The encoding of alternatives in multiple-choice decision-making. BMC Neuroscience, 2009, 10, .	1.9	5
34	A simple method for quantitative calcium imaging in unperturbed developing neurons. Journal of Neuroscience Methods, 2009, 184, 206-212.	2.5	12
35	Automata and Animats: From Dynamics to Cause–Effect Structures. , 0, , 334-365.		2