Larissa Albantakis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7660380/publications.pdf

Version: 2024-02-01

471509 454955 1,711 35 17 30 citations h-index g-index papers 37 37 37 1261 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	From the Phenomenology to the Mechanisms of Consciousness: Integrated Information Theory 3.0. PLoS Computational Biology, 2014, 10, e1003588.	3.2	657
2	Quantifying causal emergence shows that macro can beat micro. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19790-19795.	7.1	180
3	Brain mechanisms for perceptual and reward-related decision-making. Progress in Neurobiology, 2013, 103, 194-213.	5.7	133
4	Can the macro beat the micro? Integrated information across spatiotemporal scales. Neuroscience of Consciousness, 2016, 2016, niw012.	2.6	75
5	Evolution of Integrated Causal Structures in Animats Exposed to Environments of Increasing Complexity. PLoS Computational Biology, 2014, 10, e1003966.	3.2	71
6	The encoding of alternatives in multiple-choice decision making. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10308-10313.	7.1	62
7	PyPhi: A toolbox for integrated information theory. PLoS Computational Biology, 2018, 14, e1006343.	3.2	56
8	Changes of Mind in an Attractor Network of Decision-Making. PLoS Computational Biology, 2011, 7, e1002086.	3.2	51
9	Black-boxing and cause-effect power. PLoS Computational Biology, 2018, 14, e1006114.	3.2	48
10	How causal analysis can reveal autonomy in models of biological systems. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160358.	3.4	41
11	Unifying concepts of biological function from molecules to ecosystems. Oikos, 2017, 126, 1367-1376.	2.7	40
12	The Intrinsic Cause-Effect Power of Discrete Dynamical Systemsâ€"From Elementary Cellular Automata to Adapting Animats. Entropy, 2015, 17, 5472-5502.	2.2	39
13	What Caused What? A Quantitative Account of Actual Causation Using Dynamical Causal Networks. Entropy, 2019, 21, 459.	2.2	39
14	Synaptic refinement during development and its effect on slow-wave activity: a computational study. Journal of Neurophysiology, 2016, 115, 2199-2213.	1.8	22
15	Causal Composition: Structural Differences among Dynamically Equivalent Systems. Entropy, 2019, 21, 989.	2.2	22
16	Mechanism Integrated Information. Entropy, 2021, 23, 362.	2.2	22
17	Consciousness and the fallacy of misplaced objectivity. Neuroscience of Consciousness, 2021, 2021, niab032.	2.6	22
18	A measure for intrinsic information. Scientific Reports, 2020, 10, 18803.	3.3	20

#	Article	IF	Citations
19	Causal reductionism and causal structures. Nature Neuroscience, 2021, 24, 1348-1355.	14.8	20
20	A Multiple-Choice Task with Changes of Mind. PLoS ONE, 2012, 7, e43131.	2.5	19
21	A simple method for quantitative calcium imaging in unperturbed developing neurons. Journal of Neuroscience Methods, 2009, 184, 206-212.	2.5	12
22	Computing Integrated Information (\hat{l}_i^{\dagger}) in Discrete Dynamical Systems with Multi-Valued Elements. Entropy, 2021, 23, 6.	2.2	11
23	The Timing of Vision – How Neural Processing Links to Different Temporal Dynamics. Frontiers in Psychology, 2011, 2, 151.	2.1	10
24	How swarm size during evolution impacts the behavior, generalizability, and brain complexity of animats performing a spatial navigation task. , 2018 , , .		6
25	A Tale of Two Animats: What Does It Take to Have Goals?. The Frontiers Collection, 2018, , 5-15.	0.2	6
26	The encoding of alternatives in multiple-choice decision-making. BMC Neuroscience, 2009, 10, .	1.9	5
27	Fitness and neural complexity of animats exposed to environmental change. BMC Neuroscience, 2015, 16, .	1.9	3
28	How cognitive and environmental constraints influence the reliability of simulated animats in groups. PLoS ONE, 2020, 15, e0228879.	2.5	3
29	Automata and Animats: From Dynamics to Cause–Effect Structures. , 0, , 334-365.		2
30	The role of conditional independence in the evolution of intelligent systems. , 2017, , .		2
31	Learning a New Selection Rule in Visual and Frontal Cortex. Cerebral Cortex, 2016, 26, 3611-3626.	2.9	1
32	When is an action caused from within? Quantifying the causal chain leading to actions in simulated agents. , 2019, , .		1
33	Quantifying the Autonomy of Structurally Diverse Automata: A Comparison of Candidate Measures. Entropy, 2021, 23, 1415.	2.2	1
34	To be or to know? Information in the pristine present. Behavioral and Brain Sciences, 2022, 45, e42.	0.7	1
35	What decision-making models can tell us about tactile remapping. BMC Neuroscience, 2011, 12, .	1.9	0