Raghvendra K Dubey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7660242/publications.pdf

Version: 2024-02-01

111 papers 5,822 citations

42 h-index 79698 73 g-index

112 all docs

112 docs citations

112 times ranked 4953 citing authors

#	Article	IF	CITATIONS
1	Transcriptomic and Functional Evidence for Differential Effects of MCF-7 Breast Cancer Cell-Secretome on Vascular and Lymphatic Endothelial Cell Growth. International Journal of Molecular Sciences, 2022, 23, 7192.	4.1	5
2	Transcryptomic Analysis of Human Brain-Microvascular Endothelial Response to -Pericytes: Cell Orientation Defines Barrier Function. Cells, 2021, 10, 963.	4.1	15
3	Modulation of Cyclic AMP Levels in Fallopian Tube Cells by Natural and Environmental Estrogens. Cells, 2021, 10, 1250.	4.1	2
4	Transcryptomic Analysis of Human Brain -Microvascular Endothelial Cell Driven Changes in -Vascular Pericytes. Cells, 2021, 10, 1784.	4.1	8
5	Mammary Epithelial and Endothelial Cell Spheroids as a Potential Functional In vitro Model for Breast Cancer Research. Journal of Visualized Experiments, 2021, , .	0.3	2
6	Proteomic Analysis of Estrogen-Mediated Enhancement of Mesenchymal Stem Cell-Induced Angiogenesis In Vivo. Cells, 2021, 10, 2181.	4.1	3
7	Estradiol Inhibits Human Brain Vascular Pericyte Migration Activity: A Functional and Transcriptomic Analysis. Cells, 2021, 10, 2314.	4.1	6
8	Adenosine, Via A _{2B} Receptors, Inhibits Human (P-SMC) Progenitor Smooth Muscle Cell Growth. Hypertension, 2020, 75, 109-118.	2.7	7
9	Mechanism of $17\hat{l}^2$ -estradiol stimulated integration of human mesenchymal stem cells in heart tissue. Journal of Molecular and Cellular Cardiology, 2019, 133, 115-124.	1.9	9
10	Natural and environmental oestrogens induce TGFB1 synthesis in oviduct cells. Reproduction, 2018, 155, 233-244.	2.6	10
11	Dihydrotestosterone induces pro-angiogenic factors and assists homing of MSC into the cardiac tissue. Journal of Molecular Endocrinology, 2018, 60, 1-15.	2.5	10
12	2-Methoxyestradiol. Hypertension, 2017, 69, 1014-1016.	2.7	8
13	Adenosine production by brain cells. Journal of Neurochemistry, 2017, 141, 676-693.	3.9	23
14	Piperine Decreases Binding of Drugs to Human Plasma and Increases Uptake by Brain Microvascular Endothelial Cells. Phytotherapy Research, 2017, 31, 1868-1874.	5 . 8	9
15	A genetic variant in the catechol-O-methyl transferase (COMT) gene is related to age-dependent differences in the therapeutic effect of calcium-channel blockers. Medicine (United States), 2017, 96, e7029.	1.0	11
16	The estrogen metabolites 2-methoxyestradiol and 2-hydroxyestradiol inhibit endometriotic cell proliferation in estrogen-receptor-independent manner. Gynecological Endocrinology, 2016, 32, 529-533.	1.7	10
17	2-Methoxyestradiol, an endogenous $17\hat{l}^2$ -estradiol metabolite, inhibits microglial proliferation and activation via an estrogen receptor-independent mechanism. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E313-E322.	3.5	25
18	2-Methoxyestradiol blocks the RhoA/ROCK1 pathway in human aortic smooth muscle cells. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E995-E1007.	3.5	8

#	Article	IF	CITATIONS
19	Adenosine Attenuates Human Coronary Artery Smooth Muscle Cell Proliferation by Inhibiting Multiple Signaling Pathways That Converge on Cyclin D. Hypertension, 2015, 66, 1207-1219.	2.7	32
20	Developmental potential of human oocytes matured in vitro followed by vitrification and activation. Journal of Ovarian Research, 2013, 6, 30.	3.0	45
21	Expression of the 2′,3′ AMPâ€adenosine pathway in astrocytes and microglia. Journal of Neurochemistry, 2011, 118, 979-987.	3.9	34
22	Estrogen Receptor- \hat{l} ± But Not - \hat{l} 2 or GPER Inhibits High Glucose-Induced Human VSMC Proliferation: Potential Role of ROS and ERK. Journal of Clinical Endocrinology and Metabolism, 2011, 96, 220-228.	3.6	41
23	Receptor for Activated Protein Kinase C1 Regulates Cell Proliferation by Modulating Calcium Signaling. Hypertension, 2011, 58, 689-695.	2.7	12
24	2′-AMP and 3′-AMP Inhibit Proliferation of Preglomerular Vascular Smooth Muscle Cells and Glomerular Mesangial Cells via A2B Receptors. Journal of Pharmacology and Experimental Therapeutics, 2011, 337, 444-450.	2.5	23
25	Estradiol Stimulates Capillary Formation by Human Endothelial Progenitor Cells. Hypertension, 2010, 56, 397-404.	2.7	38
26	Extracellular $3\hat{a}\in^2$, $5\hat{a}\in^2$ -cAMP-Adenosine Pathway Inhibits Glomerular Mesangial Cell Growth. Journal of Pharmacology and Experimental Therapeutics, 2010, 333, 808-815.	2.5	22
27	Extracellular 2′,3′-Cyclic Adenosine Monophosphate Is a Potent Inhibitor of Preglomerular Vascular Smooth Muscle Cell and Mesangial Cell Growth. Hypertension, 2010, 56, 151-158.	2.7	35
28	Adenosine A ₁ Receptor Activation as a Brake on the Microglial Response after Experimental Traumatic Brain Injury in Mice. Journal of Neurotrauma, 2010, 27, 901-910.	3.4	78
29	Candidate Genes and Mechanisms for 2-Methoxyestradiol–Mediated Vasoprotection. Hypertension, 2010, 56, 964-972.	2.7	30
30	Resveratrol, a Red Wine Constituent, Blocks the Antimitogenic Effects of Estradiol on Human Female Coronary Artery Smooth Muscle Cells. Journal of Clinical Endocrinology and Metabolism, 2010, 95, E9-E17.	3.6	12
31	Potential vascular actions of 2-methoxyestradiol. Trends in Endocrinology and Metabolism, 2009, 20, 374-379.	7.1	50
32	Stem Cell-Like Human Endothelial Progenitors Show Enhanced Colony-Forming Capacity After Brief Sevoflurane Exposure: Preconditioning of Angiogenic Cells by Volatile Anesthetics. Anesthesia and Analgesia, 2009, 109, 1117-1126.	2.2	26
33	Medroxyprogesterone Abrogates the Inhibitory Effects of Estradiol on Vascular Smooth Muscle Cells by Preventing Estradiol Metabolism. Hypertension, 2008, 51, 1197-1202.	2.7	11
34	Adenosine in the Kidney., 2008,, 413-423.		0
35	The Pancreatohepatorenal cAMP-Adenosine Mechanism. Journal of Pharmacology and Experimental Therapeutics, 2007, 321, 799-809.	2.5	15
36	2-Methoxyestradiol: A Potential Treatment for Multiple Proliferative Disorders. Endocrinology, 2007, 148, 4125-4127.	2.8	20

#	Article	IF	CITATIONS
37	The Extracellular cAMP-Adenosine Pathway Significantly Contributes to the in Vivo Production of Adenosine. Journal of Pharmacology and Experimental Therapeutics, 2007, 320, 117-123.	2.5	23
38	Conversion of tibolone to $7\hat{l}_{\pm}$ -methyl-ethinyl estradiol using gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry. Menopause, 2006, 13, 926-934.	2.0	9
39	2-Methoxyestradiol, an Estradiol Metabolite, Inhibits Neointima Formation and Smooth Muscle Cell Growth via Double Blockade of the Cell Cycle. Circulation Research, 2006, 99, 266-274.	4.5	78
40	cAMP-Adenosine Pathway in the Proximal Tubule. Journal of Pharmacology and Experimental Therapeutics, 2006, 317, 1219-1229.	2.5	41
41	Estrogen Metabolite 2-Methoxyestradiol Induces Apoptosis and Inhibits Cell Proliferation and Collagen Production in Rat and Human Leiomyoma Cells: A Potential Medicinal Treatment for Uterine Fibroids. Journal of the Society for Gynecologic Investigation, 2006, 13, 542-550.	1.7	47
42	Estradiol Metabolites Attenuate Renal and Cardiovascular Injury Induced by Chronic Nitric Oxide Synthase Inhibition. Journal of Cardiovascular Pharmacology, 2005, 46, 25-35.	1.9	40
43	Cytochromes 1A1/1B1- and Catechol-O-Methyltransferase-Derived Metabolites Mediate Estradiol-Induced Antimitogenesis in Human Cardiac Fibroblast. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 247-255.	3.6	33
44	Adenosine Inhibits PDGF-Induced Growth of Human Glomerular Mesangial Cells Via A 2B Receptors. Hypertension, 2005, 46, 628-634.	2.7	34
45	Vascular consequences of menopause and hormone therapy: Importance of timing of treatment and type of estrogen. Cardiovascular Research, 2005, 66, 295-306.	3.8	197
46	Tibolone and Its Metabolites Induce Antimitogenesis in Human Coronary Artery Smooth Muscle Cells: Role of Estrogen, Progesterone, and Androgen Receptors. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 852-859.	3.6	16
47	Catecholamines Block the Antimitogenic Effect of Estradiol on Human Coronary Artery Smooth Muscle Cells. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 3922-3931.	3.6	21
48	Cardiovascular Pharmacology of Estradiol Metabolites. Journal of Pharmacology and Experimental Therapeutics, 2004, 308, 403-409.	2.5	122
49	2-Hydroxyestradiol Is a Prodrug of 2-Methoxyestradiol. Journal of Pharmacology and Experimental Therapeutics, 2004, 309, 1093-1097.	2.5	40
50	Hormone Replacement Therapy and Cardiovascular Disease. Hypertension, 2004, 44, 789-795.	2.7	81
51	Differential Regulation of Estrogen Receptor Subtypes $\hat{l}\pm$ and \hat{l}^2 in Human Aortic Smooth Muscle Cells by Oligonucleotides and Estradiol. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 2373-2381.	3.6	27
52	A gas chromatography/mass spectrometry assay to measure estradiol, catecholestradiols, and methoxyestradiols in plasma. Steroids, 2004, 69, 255-261.	1.8	27
53	Differential Effects of Natural and Environmental Estrogens on Endothelin Synthesis in Bovine Oviduct Cells1. Biology of Reproduction, 2003, 68, 1430-1436.	2.7	15
54	Methoxyestradiols Mediate the Antimitogenic Effects of 17β-Estradiol. Circulation, 2003, 108, 2974-2978.	1.6	48

#	Article	IF	Citations
55	Oviduct Cells Express the Cyclic AMP-Adenosine Pathway1. Biology of Reproduction, 2003, 69, 868-875.	2.7	25
56	Methylation of 2-Hydroxyestradiol in Isolated Organs. Hypertension, 2003, 42, 82-87.	2.7	15
57	Catecholamines Block the Antimitogenic Effect of Estradiol on Human Glomerular Mesangial Cells. Hypertension, 2003, 42, 349-355.	2.7	9
58	Adenosine Biosynthesis in the Collecting Duct. Journal of Pharmacology and Experimental Therapeutics, 2003, 307, 888-896.	2.5	36
59	CYP450- and COMT-Derived Estradiol Metabolites Inhibit Activity of Human Coronary Artery SMCs. Hypertension, 2003, 41, 807-813.	2.7	51
60	Sex hormones and hypertension. Cardiovascular Research, 2002, 53, 688-708.	3.8	453
61	Role of Methoxyestradiols in the Growth Inhibitory Effects of Estradiol on Human Glomerular Mesangial Cells. Hypertension, 2002, 39, 418-424.	2.7	50
62	Oral contraceptives and the risk of thrombosis and atherosclerosis. Expert Opinion on Investigational Drugs, 2002, 11, 329-332.	4.1	9
63	Methoxyestradiols Mediate the Antimitogenic Effects of Locally Applied Estradiol on Cardiac Fibroblast Growth. Hypertension, 2002, 39, 412-417.	2.7	40
64	Methoxyestradiols Mediate Estradiol-Induced Antimitogenesis in Human Aortic SMCs. Hypertension, 2002, 39, 874-879.	2.7	67
65	Catecholamines Block 2-Hydroxyestradiol-Induced Antimitogenesis in Mesangial Cells. Hypertension, 2002, 39, 854-859.	2.7	8
66	2-Hydroxyestradiol Attenuates Renal Disease in Chronic Puromycin Aminonucleoside Nephropathy. Journal of the American Society of Nephrology: JASN, 2002, 13, 2737-2747.	6.1	40
67	A _{2B} Adenosine Receptors Stimulate Growth of Porcine and Rat Arterial Endothelial Cells. Hypertension, 2002, 39, 530-535.	2.7	7 5
68	Long-term effects of combined oral contraceptives on markers of endothelial function and lipids in healthy premenopausal women. Contraception, 2002, 65, 231-236.	1.5	12
69	Estrogen-induced cardiorenal protection: potential cellular, biochemical, and molecular mechanisms. American Journal of Physiology - Renal Physiology, 2001, 280, F365-F388.	2.7	208
70	Role of the extracellular cAMP-adenosine pathway in renal physiology. American Journal of Physiology - Renal Physiology, 2001, 281, F597-F612.	2.7	85
71	Invited Review: Cardiovascular protective effects of $17\hat{l}^2$ -estradiol metabolites. Journal of Applied Physiology, 2001, 91, 1868-1883.	2.5	112
72	A _{2B} Receptors Mediate the Antimitogenic Effects of Adenosine in Cardiac Fibroblasts. Hypertension, 2001, 37, 716-721.	2.7	78

#	Article	IF	CITATIONS
73	Catecholamines Abrogate Antimitogenic Effects of 2-Hydroxyestradiol on Human Aortic Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 1745-1750.	2.4	29
74	Effects of Estradiol and Its Metabolites on Glomerular Endothelial Nitric Oxide Synthesis and Mesangial Cell Growth. Hypertension, 2001, 37, 645-650.	2.7	65
75	Increased 2-Methoxyestradiol Production in Human Coronary Versus Aortic Vascular Cells. Hypertension, 2001, 37, 658-662.	2.7	35
76	Estradiol Metabolites Inhibit Endothelin Synthesis by an Estrogen Receptor-Independent Mechanism. Hypertension, 2001, 37, 640-644.	2.7	138
77	Endogenous Cyclic AMP-Adenosine Pathway Regulates Cardiac Fibroblast Growth. Hypertension, 2001, 37, 1095-1100.	2.7	53
78	Dysregulation of Extracellular Adenosine Levels by Vascular Smooth Muscle Cells From Spontaneously Hypertensive Rats. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 249-254.	2.4	11
79	Vascular effects of environmental oestrogens: implications for reproductive and vascular health. Human Reproduction Update, 2000, 6, 351-363.	10.8	28
80	A2BReceptors Mediate Antimitogenesis in Vascular Smooth Muscle Cells. Hypertension, 2000, 35, 267-272.	2.7	73
81	Cardiac Fibroblasts Express the cAMP-Adenosine Pathway. Hypertension, 2000, 36, 337-342.	2.7	50
82	Estradiol Inhibits Smooth Muscle Cell Growth in Part by Activating the cAMP-Adenosine Pathway. Hypertension, 2000, 35, 262-266.	2.7	53
83	Clinically Used Estrogens Differentially Inhibit Human Aortic Smooth Muscle Cell Growth and Mitogen-Activated Protein Kinase Activity. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 964-972.	2.4	92
84	Methoxyestradiols Mediate the Antimitogenic Effects of Estradiol on Vascular Smooth Muscle Cells via Estrogen Receptor-Independent Mechanisms. Biochemical and Biophysical Research Communications, 2000, 278, 27-33.	2.1	77
85	Estrogen and Tamoxifen Metabolites Protect Smooth Muscle Cell Membrane Phospholipids Against Peroxidation and Inhibit Cell Growth. Circulation Research, 1999, 84, 229-239.	4.5	95
86	Adenosine Inhibits Collagen and Total Protein Synthesis in Vascular Smooth Muscle Cells. Hypertension, 1999, 33, 190-194.	2.7	41
87	Phytoestrogens Inhibit Growth and MAP Kinase Activity in Human Aortic Smooth Muscle Cells. Hypertension, 1999, 33, 177-182.	2.7	123
88	Peroxidase-Catalyzed Pro- versus Antioxidant Effects of 4-Hydroxytamoxifen:  Enzyme Specificity and Biochemical Sequelae. Chemical Research in Toxicology, 1999, 12, 28-37.	3.3	28
89	Adenosine Inhibits Growth of Human Aortic Smooth Muscle Cells Via A _{2B} Receptors. Hypertension, 1998, 31, 516-521.	2.7	89
90	Adenosine Inhibits Collagen and Protein Synthesis in Cardiac Fibroblasts. Hypertension, 1998, 31, 943-948.	2.7	113

#	Article	IF	Citations
91	17Î ² -Estradiol, Its Metabolites, and Progesterone Inhibit Cardiac Fibroblast Growth. Hypertension, 1998, 31, 522-528.	2.7	153
92	Cyclic AMP-Adenosine Pathway Induces Nitric Oxide Synthesis in Aortic Smooth Muscle Cells. Hypertension, 1998, 31, 296-302.	2.7	53
93	Differential Effects of Hormone-Replacement Therapy on Endogenous Nitric Oxide (Nitrite/Nitrate) Levels in Postmenopausal Women Substituted with $17\hat{l}^2$ -Estradiol Valerate and Cyproterone Acetate or Medroxyprogesterone Acetate < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < sup > 1 < s	3.6	90
94	Factors controlling growth and matrix production and matrix production in vascular smooth muscle and glomerular mesangial cell. Current Opinion in Nephrology and Hypertension, 1997, 6, 88-105.	2.0	83
95	Amphotericin B as an intracellular antioxidant. Biochemical Pharmacology, 1997, 54, 937-945.	4.4	13
96	Phosphodiesterases in the Rat Renal Vasculature. Journal of Cardiovascular Pharmacology, 1997, 30, 798-801.	1.9	24
97	Exogenous and Endogenous Adenosine Inhibits Fetal Calf Serum–Induced Growth of Rat Cardiac Fibroblasts. Circulation, 1997, 96, 2656-2666.	1.6	113
98	Possible role of adenosine deaminase in vaso-occlusive diseases. Journal of Hypertension, 1996, 14, 19???30.	0.5	16
99	Reduced liver function is the trigger for renal sodium retention following portal vein ligation in the rat. Journal of Gastroenterology and Hepatology (Australia), 1996, 11, 850-856.	2.8	4
100	Smooth Muscle Cell–Derived Adenosine Inhibits Cell Growth. Hypertension, 1996, 27, 766-773.	2.7	49
101	Adenosine Inhibits Growth of Rat Aortic Smooth Muscle Cells. Hypertension, 1996, 27, 786-793.	2.7	73
102	Cyclic AMP–Adenosine Pathway Inhibits Vascular Smooth Muscle Cell Growth. Hypertension, 1996, 28, 765-771.	2.7	58
103	Andrology: Effects of nitric oxide on human spermatozoa: evidence that nitric oxide decreases sperm motility and induces sperm toxicity. Human Reproduction, 1995, 10, 1786-1790.	0.9	191
104	Circulating Nitric Oxide (Nitrite/Nitrate) Levels in Postmenopausal Women Substituted With 17β-Estradiol and Norethisterone Acetate. Hypertension, 1995, 25, 848-853.	2.7	220
105	Nitric oxide inhibits angiotensin Il-induced migration of rat aortic smooth muscle cell. Role of cyclic-nucleotides and angiotensin1 receptors Journal of Clinical Investigation, 1995, 96, 141-149.	8.2	301
106	Culture of rat mesenteric arteriolar smooth muscle cells: effects of platelet-derived growth factor, angiotensin, and nitric oxide on growth. Cell and Tissue Research, 1994, 275, 133-141.	2.9	27
107	Impairment of UDP-glucose dehydrogenase and glucuronidation activities in liver and small intestine of rat and guinea pig in vitro by piperine. Biochemical Pharmacology, 1993, 46, 229-238.	4.4	103
108	Vascular biology of human coronary artery and bypass graft disease. Current Opinion in Cardiology, 1993, 8, 963-974.	1.8	10

#	Article	IF	CITATIONS
109	Localization and characterization of drugmetabolizing enzymes along the villus-crypt surface of the rat small intestine—l. Biochemical Pharmacology, 1988, 37, 169-176.	4.4	28
110	Localization and characterization of drug-metabolizing enzymes along the villus-crypt surface of the rat small intestine—II. Biochemical Pharmacology, 1988, 37, 177-184.	4.4	32
111	Effects of endosulfan and its metabolites on rat liver mitochondrial respiration and enzyme activities in vitro. Biochemical Pharmacology, 1984, 33, 3405-3410.	4.4	21