Edzard Spillner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7659680/publications.pdf

Version: 2024-02-01

79 2,755
papers citations

31 50
h-index g-index

82 82 all docs docs citations

82 times ranked 2571 citing authors

#	Article	IF	CITATIONS
1	Structural and functional analyses of antibodies specific for modified core Nâ€glycans suggest a role in ⟨scp⟩T⟨sub⟩H⟨ sub⟩2⟨ scp⟩ responses. Allergy: European Journal of Allergy and Clinical Immunology, 2023, 78, 121-130.	5.7	8
2	Nanobodyâ€based human antibody formats act as <scp>lgE</scp> surrogate in hymenoptera venom allergy. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 2859-2862.	5.7	5
3	Current research and unmet needs in allergy and immunology in Germany: report presented by the DGfl and DGAKI task force Allergy & DGFl and DGAKI task force Allergy & DGFl and DGFL European Journal of Immunology, 2022, 52, 851-855.	2.9	O
4	Carbohydrate epitopes currently recognized as targets for IgE antibodies. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2383-2394.	5.7	36
5	In Silico Evaluation of the Binding Site of Fucosyltransferase 8 and First Attempts to Synthesize an Inhibitor with Drugâ€Like Properties. ChemBioChem, 2020, 21, 1923-1931.	2.6	3
6	Structure of intact IgE and the mechanism of ligelizumab revealed by electron microscopy. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1956-1965.	5.7	22
7	The Honeybee Venom Major Allergen Api m 10 (Icarapin) and Its Role in Diagnostics and Treatment of Hymenoptera Venom Allergy. Current Allergy and Asthma Reports, 2020, 20, 48.	5.3	18
8	The honey bee venom allergen Api m 10 displays one major IgE epitope, Api m 10 _{160â€174} . Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1756-1759.	5.7	4
9	Inhibiting phosphatase SHIP-1 enhances suboptimal IgE-mediated activation of human blood basophils but inhibits IgE-mediated activation of cultured human mast cells. Immunology Letters, 2019, 210, 40-46.	2.5	2
10	Venoms of Neotropical wasps lack cross-reactive carbohydrate determinants enabling reliable protein-based specific IgE determination. Journal of Allergy and Clinical Immunology, 2018, 141, 1917-1919.e1.	2.9	16
11	Trapping IgE in a closed conformation by mimicking CD23 binding prevents and disrupts FclµRI interaction. Nature Communications, 2018, 9, 7.	12.8	88
12	Phospholipase A1-based cross-reactivity among venoms of clinically relevant Hymenoptera from Neotropical and temperate regions. Molecular Immunology, 2018, 93, 87-93.	2.2	16
13	Characterization of the honeybee venom proteins C1q-like protein and PVF1 and their allergenic potential. Toxicon, 2018, 150, 198-206.	1.6	6
14	AllergoOncology: Generating a canine anticancer IgE against the epidermal growth factor receptor. Journal of Allergy and Clinical Immunology, 2018, 142, 973-976.e11.	2.9	14
15	Comparing sensitivity of Hymenoptera allergen components on different diagnostic assay systems: Comparing apples and oranges?. Journal of Allergy and Clinical Immunology, 2017, 139, 1066-1067.	2.9	8
16	<i>N</i> â€glycan maturation mutants in <i>Lotus japonicus</i> for basic and applied glycoprotein research. Plant Journal, 2017, 91, 394-407.	5.7	25
17	Diagnostics in Hymenoptera venom allergy: current concepts and developments with special focus on molecular allergy diagnostics. Allergo Journal International, 2017, 26, 93-105.	2.0	58
18	AllergoOncology – the impact of allergy in oncology: <scp>EAACI</scp> position paper. Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 866-887.	5.7	68

#	Article	IF	Citations
19	Component resolved diagnostics for hymenoptera venom allergy. Current Opinion in Allergy and Clinical Immunology, 2017, 17, 363-372.	2.3	57
20	Application of recombinant antigen 5 allergens from seven allergy-relevant Hymenoptera species in diagnostics. Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 98-108.	5.7	44
21	6th International Symposium on Molecular Allergology (ISMA). Clinical and Translational Allergy, 2016, 6, .	3.2	2
22	Human serum substitution by artificial sera of scalable allergen reactivity based on polyclonal antibodies and chimeras of human Fcl³Rl and IgE domains. Allergy: European Journal of Allergy and Clinical Immunology, 2016, 71, 1794-1799.	5.7	8
23	Predominant Api m 10 sensitization as risk factor for treatment failure in honey bee venom immunotherapy. Journal of Allergy and Clinical Immunology, 2016, 138, 1663-1671.e9.	2.9	93
24	Human IgE is efficiently produced in glycosylated and biologically active form in lepidopteran cells. Molecular Immunology, 2016, 72, 49-56.	2.2	9
25	<scp>rA</scp> pi m 3 and <scp>rA</scp> pi m 10 improve detection of honey bee sensitization in Hymenoptera venomâ€allergic patients with double sensitization to honey bee and yellow jacket venom. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 1665-1668.	5.7	35
26	Structure of the omalizumab Fab. Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 419-426.	0.8	16
27	Decline of Ves v 5-specific blocking capacity in wasp venom-allergic patients after stopping allergen immunotherapy. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 715-719.	5.7	26
28	lgE recognition of chimeric isoforms of the honeybee (Apis mellifera) venom allergen Api m 10 evaluated by protein array technology. Molecular Immunology, 2015, 63, 449-455.	2.2	24
29	Optimierte Diagnostik der Insektengiftallergie durch rekombinante Allergene. , 2015, , 257-275.		0
30	Generation of a Canine Anti-EGFR (ErbB-1) Antibody for Passive Immunotherapy in Dog Cancer Patients. Molecular Cancer Therapeutics, 2014, 13, 1777-1790.	4.1	45
31	Hymenoptera Allergens: From Venom to "Venome― Frontiers in Immunology, 2014, 5, 77.	4.8	72
32	Component resolution reveals additional major allergens in patients with honeybee venom allergy. Journal of Allergy and Clinical Immunology, 2014, 133, 1383-1389.e6.	2.9	152
33	Recombinant allergens rarely allow identification of Hymenoptera venom–allergic patients with negative specific IgE to whole venom preparations. Journal of Allergy and Clinical Immunology, 2014, 134, 493-494.e1.	2.9	26
34	In vitro immunomonitoring of insect venom-allergic patients on immunotherapy. Clinical and Translational Allergy, 2014, 4, .	3.2	0
35	Identification of Hymenoptera venom–allergic patients with negative specific IgE to venom extract by using recombinant allergens. Journal of Allergy and Clinical Immunology, 2014, 133, 909-910.	2.9	41
36	Basophil Activation Test Using Recombinant Allergens: Highly Specific Diagnostic Method Complementing Routine Tests in Wasp Venom Allergy. PLoS ONE, 2014, 9, e108619.	2.5	34

#	Article	IF	Citations
37	Polistes species venom is devoid of carbohydrate-based cross-reactivity and allows interference-free diagnostics. Journal of Allergy and Clinical Immunology, 2013, 131, 1239-1242.	2.9	44
38	Extending the honey bee venome with the antimicrobial peptide apidaecin and a protein resembling wasp antigen 5. Insect Molecular Biology, 2013, 22, 199-210.	2.0	36
39	Donor Assists Acceptor Binding and Catalysis of Human $\hat{l}\pm1$,6-Fucosyltransferase. ACS Chemical Biology, 2013, 8, 1830-1840.	3.4	21
40	Vitellogenins Are New High Molecular Weight Components and Allergens (Api m 12 and Ves v 6) of Apis mellifera and Vespula vulgaris Venom. PLoS ONE, 2013, 8, e62009.	2.5	73
41	90â€fImproving the Diagnosis of Hymenoptera Venom Allergy. World Allergy Organization Journal, 2012, 5, S30.	3.5	0
42	Recombinant IgE antibody engineering to target EGFR. Cancer Immunology, Immunotherapy, 2012, 61, 1565-1573.	4.2	23
43	Formation of the immunogenic $\hat{l}\pm 1,3$ -fucose epitope: Elucidation of substrate specificity and of enzyme mechanism of core fucosyltransferase A. Insect Biochemistry and Molecular Biology, 2012, 42, 116-125.	2.7	8
44	An IgE epitope of Bet ν 1 and fagales PR10 proteins as defined by a human monoclonal IgE. Allergy: European Journal of Allergy and Clinical Immunology, 2012, 67, 1530-1537.	5.7	35
45	Comparable IgE reactivity to natural and recombinant Api m 1 in cross-reactive carbohydrate determinant–negative patients with bee venom allergy. Journal of Allergy and Clinical Immunology, 2012, 130, 276-278.	2.9	47
46	Donor substrate binding and enzymatic mechanism of human core $\hat{l}\pm 1$,6-fucosyltransferase (FUT8). Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 1915-1925.	2.4	25
47	Avian IgY antibodies and their recombinant equivalents in research, diagnostics and therapy. Biologicals, 2012, 40, 313-322.	1.4	80
48	Antiâ€ŧumor activity of a Bâ€cell receptorâ€ŧargeted peptide in a novel disseminated lymphoma xenograft model. International Journal of Cancer, 2012, 131, E10-20.	5.1	3
49	The major royal jelly proteins 8 and 9 (<scp>A</scp> pi m 11) are glycosylated components of <i>Apis mellifera</i> venom with allergenic potential beyond carbohydrateâ€based reactivity. Clinical and Experimental Allergy, 2012, 42, 976-985.	2.9	68
50	Detection of IgE to recombinant Api m 1 and rVes v 5 is valuable but not sufficient to distinguish bee from wasp venom allergy. Journal of Allergy and Clinical Immunology, 2011, 128, 247-248.	2.9	74
51	Evaluation of Different Glycoforms of Honeybee Venom Major Allergen Phospholipase A2 (Api m 1) Produced in Insect Cells. Protein and Peptide Letters, 2011, 18, 415-422.	0.9	36
52	Api m 10, a genuine A.Âmellifera venom allergen, is clinically relevant but underrepresented in therapeutic extracts. Allergy: European Journal of Allergy and Clinical Immunology, 2011, 66, 1322-1329.	5.7	107
53	Substrate recognition by complement convertases revealed in the C5-cobra venom factor complex. EMBO Journal, 2011, 30, 606-616.	7.8	87
54	Generation and epitope analysis of human monoclonal antibody isotypes with specificity for the timothy grass major allergen Phl p 5a. Molecular Immunology, 2011, 48, 1236-1244.	2.2	17

#	Article	IF	CITATIONS
55	Quantitation of serum IgE by using chimeras of human IgE receptor and avian immunoglobulin domains. Analytical Biochemistry, 2011, 412, 134-140.	2.4	11
56	Close-up of the Immunogenic $\hat{l}\pm 1,3$ -Galactose Epitope as Defined by a Monoclonal Chimeric Immunoglobulin E and Human Serum Using Saturation Transfer Difference (STD) NMR. Journal of Biological Chemistry, 2011, 286, 43103-43111.	3.4	27
57	Recombinant phospholipase A1 (Ves v 1) from yellow jacket venom for improved diagnosis of hymenoptera venom hypersensitivity. Clinical and Molecular Allergy, 2010, $8, 7$.	1.8	51
58	Identification, Recombinant Expression, and Characterization of the 100 kDa High Molecular Weight Hymenoptera Venom Allergens Api m 5 and Ves v 3. Journal of Immunology, 2010, 184, 5403-5413.	0.8	114
59	Structural basis for inhibition of complement C5 by the SSL7 protein from <i>Staphylococcus aureus </i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3681-3686.	7.1	89
60	Dissecting cross-reactivity in hymenoptera venom allergy by circumvention of \hat{l} ±-1,3-core fucosylation. Molecular Immunology, 2010, 47, 799-808.	2.2	105
61	Stereotypical Chronic Lymphocytic Leukemia B-Cell Receptors Recognize Survival Promoting Antigens on Stromal Cells. PLoS ONE, 2010, 5, e15992.	2.5	62
62	Establishment of hapten-specific monoclonal avian IgY by conversion of antibody fragments obtained from combinatorial libraries. Biotechnology and Applied Biochemistry, 2009, 52, 79.	3.1	9
63	Recombinant IgY for improvement of immunoglobulin-based analytical applications. Clinical Biochemistry, 2008, 41, 1237-1244.	1.9	14
64	Purification of Native and Recombinant Cobra Venom Factor Using Thiophilic Adsorption Chromatography. Protein and Peptide Letters, 2007, 14, 475-480.	0.9	4
65	Generation of Human Monoclonal Allergen-Specific IgE and IgG Antibodies from Synthetic Antibody Libraries. Clinical Chemistry, 2007, 53, 837-844.	3.2	26
66	Comparative expression of different antibody formats in mammalian cells and <i>Pichia pastoris</i> Biotechnology and Applied Biochemistry, 2007, 47, 205-214.	3.1	22
67	High level expression of monomeric and dimeric human $\hat{l}\pm 1,3$ -fucosyltransferase V. Journal of Biotechnology, 2006, 121, 448-457.	3.8	10
68	Bivalent monoclonal IgY antibody formats by conversion of recombinant antibody fragments. Journal of Biotechnology, 2006, 124, 446-456.	3.8	14
69	Molecular cloning and expression in insect cells of honeybee venom allergen acid phosphatase (Api m) Tj ETQq1 1	0.784314	1 1 ggBT /Over
70	Triosephosphate Isomerase- and Glyceraldehyde-3-Phosphate Dehydrogenase-Reactive Autoantibodies in the Cerebrospinal Fluid of Patients with Multiple Sclerosis. Journal of Immunology, 2006, 177, 5652-5658.	0.8	55
71	Inactivation of Complement by Recombinant Human C3 Derivatives. , 2006, 586, 347-360.		0
72	Engineering of human complement component C3 for catalytic inhibition of complement. Immunology Letters, 2005, 98, 49-56.	2.5	22

#	Article	IF	CITATION
73	Rapid detection of viruses using electrical biochips and anti-virion sera. Letters in Applied Microbiology, 2005, 40, 479-485.	2.2	21
74	Immobilized stem-loop structured probes as conformational switches for enzymatic detection of microbial 16S rRNA. Nucleic Acids Research, 2005, 33, e101-e101.	14.5	41
75	Malting Barley Grain Non-specific Lipid-Transfer Protein (ns-LTP): Importance for Grain Protection. Journal of the Institute of Brewing, 2005, 111, 99-104.	2.3	24
76	Complement Inactivation by Recombinant Human C3 Derivatives. Journal of Immunology, 2004, 173, 5540-5545.	0.8	26
77	Functional analysis of Cobra Venom Factor/human C3 chimeras transiently expressed in mammalian cells. Molecular Immunology, 2004, 41, 19-28.	2.2	10
78	Paratope-based protein identification by antibody and peptide phage display. Analytical Biochemistry, 2003, 321, 96-104.	2.4	6
79	pOVEX vector: prokaryotic expression and purification of onchocerciasis vaccine candidate antigens as fusion proteins with the 24 kD Onchocerca volvulus glutathione S-transferase. Tropical Medicine and International Health, 1997, 2, 691-694.	2.3	0