
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7659400/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The MerR family of transcriptional regulators. FEMS Microbiology Reviews, 2003, 27, 145-163.	8.6	628
2	Identification of the CRP regulon using in vitro and in vivo transcriptional profiling. Nucleic Acids Research, 2004, 32, 5874-5893.	14.5	358
3	Bacterial antimicrobial metal ion resistance. Journal of Medical Microbiology, 2015, 64, 471-497.	1.8	294
4	Metal Resistance and Its Association With Antibiotic Resistance. Advances in Microbial Physiology, 2017, 70, 261-313.	2.4	276
5	Cloning and Functional Analysis of the <i>pbr</i> Lead Resistance Determinant of <i>Ralstonia metallidurans</i> CH34. Journal of Bacteriology, 2001, 183, 5651-5658.	2.2	254
6	Whole cell- and protein-based biosensors for the detection of bioavailable heavy metals in environmental samples. Analytica Chimica Acta, 1999, 387, 235-244.	5.4	248
7	ZntR is a Zn(II)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli. Molecular Microbiology, 1999, 31, 893-902.	2.5	235
8	A Reassessment of the FNR Regulon and Transcriptomic Analysis of the Effects of Nitrate, Nitrite, NarXL, and NarQP as Escherichia coli K12 Adapts from Aerobic to Anaerobic Growth. Journal of Biological Chemistry, 2006, 281, 4802-4815.	3.4	234
9	CueR (Ybbl) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA. Molecular Microbiology, 2001, 39, 502-512.	2.5	225
10	Hybrid assembly of an agricultural slurry virome reveals a diverse and stable community with the potential to alter the metabolism and virulence of veterinary pathogens. Microbiome, 2021, 9, 65.	11.1	182
11	A Commensal Gone Bad: Complete Genome Sequence of the Prototypical Enterotoxigenic <i>Escherichia coli</i> Strain H10407. Journal of Bacteriology, 2010, 192, 5822-5831.	2.2	168
12	Complete Genome Sequence and Comparative Metabolic Profiling of the Prototypical Enteroaggregative Escherichia coli Strain 042. PLoS ONE, 2010, 5, e8801.	2.5	165
13	Probing bactericidal mechanisms induced by cold atmospheric plasmas withEscherichia colimutants. Applied Physics Letters, 2007, 90, 073902.	3.3	147
14	Gene doctoring: a method for recombineering in laboratory and pathogenic Escherichia coli strains. BMC Microbiology, 2009, 9, 252.	3.3	143
15	The expression profile of Escherichia coli K-12 in response to minimal, optimal and excess copper concentrations. Microbiology (United Kingdom), 2005, 151, 1187-1198.	1.8	131
16	Climate factors influencing bacterial count in background air samples. International Journal of Biometeorology, 2005, 49, 167-178.	3.0	124
17	INfrastructure for a PHAge REference Database: Identification of Large-Scale Biases in the Current Collection of Cultured Phage Genomes. Phage, 2021, 2, 214-223.	1.7	121
18	Anthropogenic environmental drivers of antimicrobial resistance in wildlife. Science of the Total Environment, 2019, 649, 12-20.	8.0	108

#	Article	IF	CITATIONS
19	Analysis of fimbrial gene clusters and their expression in enterohaemorrhagic Escherichia coli O157:H7. Environmental Microbiology, 2006, 8, 1033-1047.	3.8	98
20	A Design for Life: Prokaryotic Metal-binding MerR Family Regulators. BioMetals, 2005, 18, 429-436.	4.1	95
21	Genomic Studies with Escherichia coli MelR Protein: Applications of Chromatin Immunoprecipitation and Microarrays. Journal of Bacteriology, 2004, 186, 6938-6943.	2.2	92
22	Regulators Encoded in the Escherichia coli Type III Secretion System 2 Gene Cluster Influence Expression of Genes within the Locus for Enterocyte Effacement in Enterohemorrhagic E. coli O157:H7. Infection and Immunity, 2004, 72, 7282-7293.	2.2	89
23	The role of cysteine residues in the transport of mercuric ions by the Tn501 MerT and MerP mercury-resistance proteins. Molecular Microbiology, 1995, 17, 25-35.	2.5	87
24	MerF is a mercury transport protein: different structures but a common mechanism for mercuric ion transporters?. FEBS Letters, 2000, 472, 78-82.	2.8	82
25	Bacterial metal-resistance proteins and their use in biosensors for the detection of bioavailable heavy metals. Journal of Inorganic Biochemistry, 2000, 79, 225-229.	3.5	76
26	Laboratory adapted <i><scp>E</scp>scherichia coli</i> <scp>K</scp> â€12 becomes a pathogen of <i><scp>C</scp>aenorhabditis elegans</i> upon restoration of <scp>O</scp> antigen biosynthesis. Molecular Microbiology, 2013, 87, 939-950.	2.5	72
27	Multidrug resistant, extended spectrum β-lactamase (ESBL)-producing <i>Escherichia coli</i> isolated from a dairy farm. FEMS Microbiology Ecology, 2016, 92, fiw013.	2.7	69
28	Exposure of Escherichia coli and Salmonella enterica serovar Typhimurium to triclosan induces a species-specific response, including drug detoxification. Journal of Antimicrobial Chemotherapy, 2009, 64, 973-985.	3.0	65
29	Laboratory strains of Escherichia coli: model citizens or deceitful delinquents growing old disgracefully?. Molecular Microbiology, 2007, 64, 881-885.	2.5	64
30	MerR family transcription activators: similar designs, different specificities. Molecular Microbiology, 2007, 63, 1275-1278.	2.5	62
31	Accumulation and intracellular fate of tellurite in tellurite-resistantEscherichia coli: A model for the mechanism of resistance. FEMS Microbiology Letters, 1994, 118, 113-119.	1.8	61
32	Novel mercury resistance determinants carried by IncJ plasmids pMERPH and R391. Molecular Genetics and Genomics, 1991, 228, 294-299.	2.4	58
33	Microarray analysis of gene regulation by oxygen, nitrate, nitrite, FNR, NarL and NarP during anaerobic growth of Escherichia coli: new insights into microbial physiology. Biochemical Society Transactions, 2006, 34, 104-107.	3.4	52
34	Mercury Resistance Determinants Related to Tn 21 , Tn 1696 , and Tn 5053 in Enterobacteria from the Preantibiotic Era. Antimicrobial Agents and Chemotherapy, 2003, 47, 1115-1119.	3.2	47
35	Mathematical modelling of antimicrobial resistance in agricultural waste highlights importance of gene transfer rate. FEMS Microbiology Ecology, 2016, 92, fiw040.	2.7	47
36	Mercury transport and resistance. Biochemical Society Transactions, 2002, 30, 715-718.	3.4	45

#	Article	IF	CITATIONS
37	Global responses of <i>Escherichia coli</i> to adverse conditions determined by microarrays and FT-IR spectroscopy. Canadian Journal of Microbiology, 2009, 55, 714-728.	1.7	44
38	The Escherichia coli Regulator of Sigma 70 Protein, Rsd, Can Up-Regulate Some Stress-Dependent Promoters by Sequestering Sigma 70. Journal of Bacteriology, 2007, 189, 3489-3495.	2.2	43
39	Survival in amoeba—a major selection pressure on the presence of bacterial copper and zinc resistance determinants? Identification of a "copper pathogenicity island― Applied Microbiology and Biotechnology, 2015, 99, 5817-5824.	3.6	42
40	Comparative Genomics of Bacteriophage of the Genus Seuratvirus. Genome Biology and Evolution, 2018, 10, 72-76.	2.5	41
41	SilE is an intrinsically disordered periplasmic "molecular sponge―involved in bacterial silver resistance. Molecular Microbiology, 2016, 101, 731-742.	2.5	38
42	Translocation of transposition-deficient (Tnd PKLH2-like) transposons in the natural environment: mechanistic insights from the study of adjacent DNA sequences. Microbiology (United Kingdom), 2004, 150, 979-992.	1.8	36
43	Zinc dependence of zinT (yodA) mutants and binding of zinc, cadmium and mercury by ZinT. Biochemical and Biophysical Research Communications, 2007, 364, 66-71.	2.1	36
44	The sequence of the mer operon of pMER327/419 and transposon ends of pMER327/419, 330 and 05. Gene, 1994, 146, 73-78.	2.2	35
45	Class II broad-spectrum mercury resistance transposons in Gram-positive bacteria from natural environments. Research in Microbiology, 2001, 152, 503-514.	2.1	31
46	Removal of copper from cattle footbath wastewater with layered double hydroxide adsorbents as a route to antimicrobial resistance mitigation on dairy farms. Science of the Total Environment, 2019, 655, 1139-1149.	8.0	30
47	Cysteine coordination of Pb(II) is involved in the PbrR-dependent activation of the lead-resistance promoter, PpbrA, from Cupriavidus metallidurans CH34. BMC Microbiology, 2012, 12, 109.	3.3	28
48	The multicopper oxidase (CueO) and cell aggregation in Escherichia coli. Environmental Microbiology, 2007, 9, 2110-2116.	3.8	24
49	High-Resolution Mapping of In vivo Genomic Transcription Factor Binding Sites Using In situ DNase I Footprinting and ChIP-seq. DNA Research, 2013, 20, 325-338.	3.4	24
50	Transcriptional activation of MerR family promoters in Cupriavidus metallidurans CH34. Antonie Van Leeuwenhoek, 2009, 96, 149-159.	1.7	23
51	Microbial Mercury Reduction. , 2014, , 175-197.		23
52	Transcriptomic Responses of Bacterial Cells to Sublethal Metal Ion Stress. , 2007, , 73-115.		22
53	Towards a general model for predicting minimal metal concentrations co-selecting for antibiotic resistance plasmids. Environmental Pollution, 2021, 275, 116602.	7.5	22
54	Mercury Microbiology: Resistance Systems, Environmental Aspects, Methylation, and Human Health. , 2007, , 357-370.		21

#	Article	IF	CITATIONS
55	Draft Genome Sequences of 14 Escherichia coli Phages Isolated from Cattle Slurry. Genome Announcements, 2015, 3, .	0.8	21
56	The dynamic balance of import and export of zinc in <i>Escherichia coli</i> suggests a heterogeneous population response to stress. Journal of the Royal Society Interface, 2015, 12, 20150069.	3.4	19
57	YieJ (CbrC) Mediates CreBC-Dependent Colicin E2 Tolerance in <i>Escherichia coli</i> . Journal of Bacteriology, 2010, 192, 3329-3336.	2.2	17
58	Evidence for direct interactions between the mercuric ion transporter (MerT) and mercuric reductase (MerA) from the Tn501 mer operon. BioMetals, 2008, 21, 107-116.	4.1	16
59	Comparative Genomic Hybridization Detects Secondary Chromosomal Deletions in <i>Escherichia coli</i> K-12 MG1655 Mutants and Highlights Instability in the <i>flhDC</i> Region. Journal of Bacteriology, 2007, 189, 8786-8792.	2.2	15
60	Antibiotic and Metal Resistance in Escherichia coli Isolated from Pig Slaughterhouses in the United Kingdom. Antibiotics, 2020, 9, 746.	3.7	15
61	Bacterial resistance to arsenic protects against protist killing. BioMetals, 2017, 30, 307-311.	4.1	13
62	Laboratory Stock Variants of the Archetype Silver Resistance Plasmid pMG101 Demonstrate Plasmid Fusion, Loss of Transmissibility, and Transposition of Tn7/pco/sil Into the Host Chromosome. Frontiers in Microbiology, 2021, 12, 723322.	3.5	13
63	A generalised model for generalised transduction: the importance of co-evolution and stochasticity in phage mediated antimicrobial resistance transfer. FEMS Microbiology Ecology, 2020, 96, .	2.7	10
64	Draft Genome Sequence of the Bacteriophage vB_Eco_slurp01. Genome Announcements, 2016, 4, .	0.8	5
65	Response of Cupriavidus metallidurans CH34 to Metals. Springer Briefs in Molecular Science, 2015, , 45-89.	0.1	5
66	Genome Sequence and Characterization of Coliphage vB_Eco_SLUR29. Phage, 2020, 1, 38-44.	1.7	3
67	Metagenomics of the Viral Community in Three Cattle Slurry Samples. Microbiology Resource Announcements, 2019, 8, .	0.6	2
68	DNA Traffic in the Environment and Antimicrobial Resistance. , 2019, , 245-271.		1
69	Occurrence and distribution of antibiotics and antibiotic resistance determinants in coastal environments. , 2021, , 121-167.		0
70	Transposable Elements and Plasmid Genomes. , 2014, , 1-4.		0
71	Overexpression of MerT, the mercuric ion transport protein of transposon Tn. Molecular Genetics and Genomics, 1996, 250, 129.	2.4	0
72	Transposable Elements and Plasmid Genomes. , 2018, , 1220-1223.		0